1
|
Guerra JO, Newton MC, Nicotera CS, McGhee KE. Genetic variation in age-dependent attractiveness in a fish with a mixed mating system. Biol Lett 2025; 21:20240448. [PMID: 39838734 PMCID: PMC11751635 DOI: 10.1098/rsbl.2024.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Reproductive senescence is common across taxa and females often show a predictable decline in fecundity after maturity. Attending to these age-dependent cues could help males make optimal mate choice decisions. Here, we examined reproductive senescence and male mate choice in the androdioecious mangrove rivulus (Kryptolebias marmoratus), where self-fertilizing hermaphrodites exist with rare males. Hermaphrodites showed a strong decline in fecundity as they aged and genetic lineages varied in their fecundity at both young and old ages. Surprisingly, when given a simultaneous choice between genetically identical old and young hermaphrodites, males did not simply prefer younger hermaphrodites. Instead, male preference for younger versus older partners depended on the genetic lineage of the partners, resulting in a strong genotype × age interaction. For some genetic lineages, hermaphrodites were more attractive to males when younger, but for other genetic lineages, hermaphrodites were more attractive when older. Our results suggest that the genetic identity of the partner is key to how males weigh age-dependent changes in fecundity and that males are able to assess genetic variation in attractiveness over a partner's reproductive lifespan. Exploring how gamete viability and outcrossing are affected by age across genetic lineages could help us further understand these male preferences.
Collapse
Affiliation(s)
- Jefferson O. Guerra
- Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA
| | - Merrit C. Newton
- Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis, West Indies
| | | | - Katie E. McGhee
- Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA
| |
Collapse
|
2
|
More than meets the eye: syntopic and morphologically similar mangrove killifish species show different mating systems and patterns of genetic structure along the Brazilian coast. Heredity (Edinb) 2020; 125:340-352. [PMID: 32826964 DOI: 10.1038/s41437-020-00356-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/22/2023] Open
Abstract
Different mating systems can strongly affect the extent of genetic diversity and population structure among species. Given the increased effects of genetic drift on reduced population size, theory predicts that species undergoing self-fertilisation should have greater population structure than outcrossed species; however, demographic dynamics may affect this scenario. The mangrove killifish clade is composed of the two only known examples of self-fertilising species among vertebrates (Kryptolebias marmoratus and Kryptolebias hermaphroditus). A third species in this clade, Kryptolebias ocellatus, inhabits mangrove forests in southeast Brazil; however, its mating system and patterns of genetic structure have been rarely explored. Here, we examined the genetic structure and phylogeographic patterns of K. ocellatus along its distribution, using mitochondrial DNA and microsatellites to compare its patterns of genetic structure with the predominantly selfing and often-syntopic, K. hermaphroditus. Our results indicate that K. ocellatus reproduces mainly by outcrossing, with no current evidence of selfing, despite being an androdioecious species. Our results also reveal a stronger population subdivision in K. ocellatus compared to K. hermaphroditus, contrary to the theoretical predictions based on reproductive biology of the two species. Our findings indicate that, although morphologically similar, K. ocellatus and K. hermaphroditus had remarkably different evolutionary histories when colonising the same mangrove areas in southeastern Brazil, with other factors (e.g., time of colonisation, dispersal/establishment capacity) having more profound effects on the current population structuring of those species than differences in mating systems.
Collapse
|
3
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
4
|
|
5
|
Marson KM, Taylor DS, Earley RL. Cryptic Male Phenotypes in the Mangrove Rivulus Fish, Kryptolebias marmoratus. THE BIOLOGICAL BULLETIN 2019; 236:13-28. [PMID: 30707609 DOI: 10.1086/700697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alternative male phenotypes exist in many species and impact mating system dynamics, population genetics, and mechanisms of natural and sexual selection that operate within a population. We report on the discovery of a cryptic male phenotype in the mangrove rivulus fish (Kryptolebias marmoratus), one of only two self-fertilizing hermaphroditic vertebrates. In this androdiecious species, males are infrequent, often making up less than 5% of a population; and they have historically been described as having an orange color and lacking or having a very faded outline of the well-defined caudal eyespot (ocellus) that is obvious in hermaphrodites. The cryptic male we describe varies subtly from the hermaphrodite phenotype, without visible orange pigmentation on the body and retention or only minor fading of the ocellus. This male morph was identified by a loss of a defined melanistic "fingerprinting" on the caudal fin seen in hermaphrodites, not previously used as diagnostic for hermaphrodites, and replaced by a diffuse deposition of pigment across the fin. Individuals were identified as male with 85.7% accuracy when using these criteria. We report that in nine populations, spanning three geographically distinct regions in Florida, across two and a half years, 0.3% of the 6057 mangrove rivulus collected exhibited this cryptic male phenotype and were confirmed to have testes via dissection. Overall, 2.3% of the animals were male (normal and cryptic phenotypes), and cryptic males represented 12.9% of all males collected. Even a minor increase in individuals identified as male in a species where males make up such a small portion of the population can have important implications for population genetics. Opportunities for outbreeding are likely enhanced, which has significant evolutionary ramifications.
Collapse
Key Words
- EPP, Emerson Point Preserve
- FDS, Fort De Soto State Preserve
- HAM, Curry Hammock State Park
- LK, Long Key State Park
- MES, New Smyrna Beach
- MRT, New Smyrna Beach
- PC, Pepper Cove, Brevard County Environmentally Endangered Lands
- UM, Upper Matecumbe Key
- WEED, Weedon Island Preserve
Collapse
|
6
|
Turko AJ, Doherty JE, Yin-Liao I, Levesque K, Kruth P, Holden JM, Earley RL, Wright PA. Prolonged survival out of water is linked to a slow pace of life in a selfing amphibious fish. J Exp Biol 2019; 222:jeb.209270. [DOI: 10.1242/jeb.209270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
Metabolic rate and life history traits vary widely both among and within species reflecting trade-offs in energy allocation, but the proximate and ultimate causes of variation are not well understood. We tested the hypothesis that these trade-offs are mediated by environmental heterogeneity, using isogenic strains of the amphibious fish Kryptolebias marmoratus that vary in the amount of time each can survive out of water. Consistent with pace of life theory, the strain that survived air exposure the longest generally exhibited a “slow” phenotype including the lowest metabolic rate, largest scope for metabolic depression, slowest consumption of energy stores, and least investment in reproduction under standard conditions. Growth rates were fastest in the otherwise “slow” strain, however. We then tested for fitness trade-offs between “fast” and “slow” strains using microcosms where fish were held with either constant water availability or under fluctuating conditions where water was absent for half of the experiment. Under both conditions the “slow” strain grew larger and was in better condition, and under fluctuating conditions the “slow” strain produced more embryos. However, the “fast” strain had larger adult population sizes under both conditions, indicating that fecundity is not the sole determinant of population size in this species. We conclude that genetically based differences in pace of life of amphibious fish determine survival duration out of water. Relatively “slow” fish tended to perform better under conditions of limited water availability, but there was no detectable cost under control conditions. Thus, pace of life differences may reflect a conditionally neutral instead of antagonistic trade-off.
Collapse
Affiliation(s)
- Andy J. Turko
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Justine E. Doherty
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Irene Yin-Liao
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Kelly Levesque
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Perryn Kruth
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Joseph M. Holden
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA, 35487
| | - Ryan L. Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA, 35487
| | - Patricia A. Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
7
|
Development of G: a test in an amphibious fish. Heredity (Edinb) 2018; 122:696-708. [PMID: 30327484 DOI: 10.1038/s41437-018-0152-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023] Open
Abstract
Heritable variation in, and genetic correlations among, traits determine the response of multivariate phenotypes to natural selection. However, as traits develop over ontogeny, patterns of genetic (co)variation and integration captured by the G matrix may also change. Despite this, few studies have investigated how genetic parameters underpinning multivariate phenotypes change as animals pass through major life history stages. Here, using a self-fertilizing hermaphroditic fish species, mangrove rivulus (Kryptolebias marmoratus), we test the hypothesis that G changes from hatching through reproductive maturation. We also test Cheverud's conjecture by asking whether phenotypic patterns provide an acceptable surrogate for patterns of genetic (co)variation within and across ontogenetic stages. For a set of morphological traits linked to locomotor (jumping) performance, we find that the overall level of genetic integration (as measured by the mean-squared correlation across all traits) does not change significantly over ontogeny. However, we also find evidence that some trait-specific genetic variances and pairwise genetic correlations do change. Ontogenetic changes in G indicate the presence of genetic variance for developmental processes themselves, while also suggesting that any genetic constraints on morphological evolution may be age-dependent. Phenotypic correlations closely resembled genetic correlations at each stage in ontogeny. Thus, our results are consistent with the premise that-at least under common environment conditions-phenotypic correlations can be a good substitute for genetic correlations in studies of multivariate developmental evolution.
Collapse
|
8
|
James WR, Styga JM, White S, Marson KM, Earley RL. Phenotypically plastic responses to predation threat in the mangrove rivulus fish (Kryptolebias marmoratus): behavior and morphology. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9952-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|