1
|
Dumont M, Herrel A, Courant J, Padilla P, Shahar R, Milgram J. Femoral bone structure and mechanics at the edge and core of an expanding population of the invasive frog Xenopus laevis. J Exp Biol 2024; 227:jeb246419. [PMID: 38904393 PMCID: PMC11418183 DOI: 10.1242/jeb.246419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Understanding how living tissues respond to changes in their mechanical environment is a key question in evolutionary biology. Invasive species provide an ideal model for this as they are often transplanted between environments that differ drastically in their ecological and environmental context. Spatial sorting, the name given to the phenomenon driving differences between individuals at the core and edge of an expanding range, has been demonstrated to impact the morphology and physiology of Xenopus laevis from the invasive French population. Here, we combined a structural analysis using micro-CT scanning and a functional analysis by testing the mechanical properties of the femur to test whether the increased dispersal at the range edge drives differences in bone morphology and function. Our results show significant differences in the inner structure of the femur as well as bone material properties, with frogs from the centre of the range having more robust and resistant bones. This is suggestive of an energy allocation trade-off between locomotion and investment in bone formation, or alternatively, may point to selection for fast locomotion at the range edge. Overall, our results provide insights on the growth of the long bones and the formation of trabecular bone in frogs.
Collapse
Affiliation(s)
- Maïtena Dumont
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, PO Box 12, 7610001 Rehovot, Israel
- Max-Planck Institute for Sustainable Materials, MPISM, D-40237, Düsseldorf, Germany
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent 9000, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Julien Courant
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Pablo Padilla
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, Liège, Liege 4000, Belgium
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, PO Box 12, 7610001 Rehovot, Israel
| | - Joshua Milgram
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, PO Box 12, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
Padilla P, Herrel A, Denoël M. What makes a great invader? Anatomical traits as predictors of locomotor performance and metabolic rate in an invasive frog. J Exp Biol 2023; 226:jeb246717. [PMID: 37955111 DOI: 10.1242/jeb.246717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Invasive species are characterized by their ability to establish and spread in a new environment. In alien populations of anurans, dispersal and fitness-related traits such as endurance, burst performance and metabolism are key to their success. However, few studies have investigated inter-individual variation in these traits and more specifically have attempted to understand the drivers of variation in these traits. Associations of anatomical features may be excellent predictors of variation in performance and could be targets for selection or subject to trade-offs during invasions. In this study, we used marsh frogs (Pelophylax ridibundus), a species that has been introduced in many places outside its native range and which is now colonizing large areas of Western Europe. We first measured the inter-individual variation in resting metabolism, the time and distance they were able to jump until exhaustion, and their peak jump force, and then measured the mass of specific organs and lengths of body parts suspected to play a role in locomotion and metabolism. Among the 5000 bootstrap replicates on body size-corrected variables, our statistical models most often selected the stomach (75.42%), gonads (71.46%) and the kidneys (67.26%) as predictors of inter-individual variation in metabolism, and the gluteus maximus muscle (97.24%) mass was the most frequently selected predictor of jump force. However, endurance was poorly associated with the anatomical traits (R2distance=0.42, R2time=0.37). These findings suggest that selection on these predictors may lead to physiological changes that may affect the colonization, establishment and dispersal of these frogs.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Anthony Herrel
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000 Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
| |
Collapse
|
3
|
Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage. DIVERSITY 2023. [DOI: 10.3390/d15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exposure to agrochemicals can have lethal and sublethal effects on amphibians. Most toxicology studies only examine exposure during the aquatic larval stage. Survival of the juvenile stage is the most important for population persistence and it is critical to understand the potential impacts of exposure during this life stage. We investigated how short-term exposure to triclopyr, an herbicide commonly used in forestry management, might impact several juvenile traits. To determine if juveniles perceived exposure as an environmental stressor, we measured their release of corticosterone. We also examined dispersal traits by measuring foraging and hopping behavior. We found no evidence that exposure negatively impacted these traits or was a stressor. Our results provide a preliminary assessment of the potential impact of triclopyr on juvenile amphibians, but we recommend additional research on the effects of agrochemicals on juvenile amphibians.
Collapse
|
4
|
Ginal P, Kruger N, Wagener C, Araspin L, Mokhatla M, Secondi J, Herrel A, Measey J, Rödder D. More time for aliens? Performance shifts lead to increased activity time budgets propelling invasion success. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the Grinnellian niche concept, the realized niche and potential distribution is characterized as an interplay among the fundamental niche, biotic interactions and geographic accessibility. Climate is one of the main drivers for this concept and is essential to predict a taxon’s distribution. Mechanistic approaches can be useful tools, which use fitness-related aspects like locomotor performance and critical thermal limits to predict the potential distribution of an organism. These mechanistic approaches allow the inclusion key ecological processes like local adaptation and can account for thermal performance traits of different life-history stages. The African Clawed Frog, Xenopus laevis, is a highly invasive species occurring on five continents. The French population is of special interest due to an ongoing expansion for 40 years and a broad base of knowledge. We hypothesize that (1) the French population exhibits increased activity time in the invasive European range that could be devoted to fitness-relevant activity and (2) tadpoles may have less activity time available than adult frogs from the same range. We investigate how thermal performance traits translate into activity time budgets and how local adaptation and differences in the thermal responses of life-history stages may boost the European Xenopus invasion. We use a mechanistic approach based on generalized additive mixed models, where thermal performance curves were used to predict the hours of activity and to compare the potential activity time budgets for two life-history stages of native and invasive populations. Our results show that adult French frogs have more activity time available in Europe compared to South African frogs, which might be an advantage in searching for prey or escaping from predators. However, French tadpoles do not have more activity time in Europe compared to the native South African populations suggesting that tadpoles do not suffer the same strong selective pressure as adult frogs.
Collapse
|
5
|
Mühlenhaupt M, Baxter-Gilbert J, Makhubo BG, Riley JL, Measey J. No evidence for innate differences in tadpole behavior between natural, urbanized, and invasive populations. Behav Ecol Sociobiol 2022; 76:11. [PMID: 35002046 PMCID: PMC8727469 DOI: 10.1007/s00265-021-03121-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
Abstract Animals are increasingly challenged to respond to novel or rapidly changing habitats due to urbanization and/or displacement outside their native range by humans. Behavioral differences, such as increased boldness (i.e., propensity for risk-taking), are often observed in animals persisting in novel environments; however, in many cases, it is unclear how these differences arise (e.g., through developmental plasticity or evolution) or when they arise (i.e., at what age or developmental stage). In the Guttural Toad (Sclerophrys gutturalis), adult urban toads from both native and invasive ranges are bolder than conspecifics in natural habitats. Here, we reared Guttural Toad tadpoles in a common garden experiment, and tested for innate differences in boldness across their development and between individuals whose parents and lineage came from rural-native, urban-native, and urban-invasive localities (i.e., origin populations). Tadpoles did not differ in their boldness or in how their boldness changed over ontogeny based on their origin populations. In general, tadpoles typically became less bold as they aged, irrespective of origin population. Our findings indicate that differences in boldness in free-living adult Guttural Toads are not innate in the tadpole stage and we discuss three possible mechanisms driving phenotypic divergence in adult boldness for the focus of future research: habitat-dependent developmental effects on tadpole behavior, decoupled evolution between the tadpole and adult stage, and/or behavioral flexibility, learning, or acclimatization during the adult stage. Significance statement To determine if animals can persist in urban areas or become invasive outside their native ranges, it is important to understand how they adapt to life in the city. Our study investigates if differences in boldness that have been found in adult Guttural Toads (Sclerophrys gutturalis) represent heritable differences that can also be found in early life stages by rearing tadpoles from eggs in a common garden experiment. We did not find any differences in boldness among tadpoles from rural-native, urban-native, and urban-invasive origin populations. Our findings suggest that differences in boldness are not innate and/or that boldness is a behavioral trait that is decoupled between the tadpole and the adult stage.
Collapse
Affiliation(s)
- Max Mühlenhaupt
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany.,Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape 7600 South Africa
| | - James Baxter-Gilbert
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape 7600 South Africa
| | - Buyisile G Makhubo
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, 91 Ridge Rd, Pietermaritzburg, Scottsville 3201 South Africa
| | - Julia L Riley
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape 7600 South Africa.,Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2 Canada.,Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1E2 Canada
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape 7600 South Africa
| |
Collapse
|
6
|
Comerford M, Egan SP. The potential role of spatial sorting in speciation and adaptive radiations. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Scott P. Egan
- Department of BioSciences Rice University Houston Texas USA
| |
Collapse
|
7
|
Vimercati G, Kruger N, Secondi J. Land cover, individual's age and spatial sorting shape landscape resistance in the invasive frog Xenopus laevis. J Anim Ecol 2021; 90:1177-1190. [PMID: 33608946 DOI: 10.1111/1365-2656.13445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
The description of functional connectivity is based on the quantification of landscape resistance, which represents species-specific movement costs across landscape features. Connectivity models use these costs to identify movement corridors at both individual and population levels and provide management recommendations for populations of conservation interest. Typically, resistance costs assigned to specific land cover types are assumed to be valid for all individuals of the population. Little attention has been paid to intraspecific variation in resistance costs due to age or dispersal syndrome, which may significantly affect model predictions. We quantified resistance costs in an expanding invasive population of the African clawed frog Xenopus laevis in Western France. In this principally aquatic amphibian, juveniles, sub-adults and adults disperse overland. The enhancement of dispersal traits via spatial sorting has been also observed at the range periphery of the population. Resistance costs, and thus connectivity, might vary as a function of life stage and position within the invaded range. We assessed multiple dimensions of functional connectivity. On various land cover types, we measured locomotion, as crossing speed, in different post-metamorphic age classes, and dehydration, sensitivity of locomotion to dehydration and substrate preference in juveniles. We also tested the effect of the position in the invaded range (core vs. periphery) on individual performances. In juveniles, general trends towards higher resistance costs on grass and lower resistance costs on bare soil and asphalt were observed, although not all experiments provided the same cost configurations. Resistance to locomotion varied between age classes, with adults and sub-adults facing lower costs than juveniles, particularly when crossing structurally complex land cover types such as grass and leaf litter. The position in the range had a minor effect on landscape resistance, and only in the dehydration experiment, where water loss in juveniles was lower at the range periphery. Depicting functional connectivity requires (a) assessing multiple dimensions of behavioural and physiological challenges faced by animals during movement; (b) considering factors, such as age and dispersal syndrome, that may affect movement at both individual and population levels. Ignoring this complexity might generate unreliable connectivity models and provide unsupported management recommendations for conservation.
Collapse
Affiliation(s)
| | - Natasha Kruger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France.,Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Jean Secondi
- Faculté des Sciences, Université d'Angers, Angers, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| |
Collapse
|
8
|
Kruger N, Measey J, Vimercati G, Herrel A, Secondi J. Does the spatial sorting of dispersal traits affect the phenotype of the non-dispersing stages of the invasive frog Xenopus laevis through coupling? Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
In amphibians, spatial sorting progressively enhances the dispersal capacities of dispersing stages in expanding populations but may enhance or limit the performance of the earlier non-dispersing stages. Phenotypic traits of non-dispersing tadpoles and metamorphs can be coupled, through carry-over effects and trade-offs, or decoupled to dispersal traits in adults. We used the globally invasive amphibian, Xenopus laevis, to examine whether spatial sorting of adult phenotypes affects the phenotype of larval stages to metamorphosis in the core and at the periphery of an invasive population in France. We combined common garden laboratory and outdoor experiments to test the effect of parental pond location (core or periphery) on morphology, development and survival to metamorphosis and found no differences between tadpoles. After metamorphosis, the only difference observed in either of the experiments was the larger body size of metamorphs from the periphery, and then only when reared in the laboratory. Differences in metamorph size may indicate that a shift of dispersal traits occur after metamorphosis in X. laevis. Thus, our findings illustrate that decoupled evolution through spatial sorting can lead to changes of X. laevis adult phenotypes that would enhance dispersal without affecting the phenotype of tadpoles before metamorphosis.
Collapse
Affiliation(s)
- Natasha Kruger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John Measey
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anthony Herrel
- UMR 7179 Département Adaptation du Vivant, Centre National de la Recherche, Muséum national d’Histoire naturelle, Paris, France
| | - Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Faculté des Sciences, Université d’Angers, Angers, France
| |
Collapse
|
9
|
Liparoto A, Canestrelli D, Bisconti R, Carere C, Costantini D. Biogeographic history moulds population differentiation in ageing of oxidative status in an amphibian. J Exp Biol 2020; 223:jeb235002. [PMID: 32978316 DOI: 10.1242/jeb.235002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Regulation of oxidative status plays a substantial role in physiological ageing. However, we know little about age-related changes of oxidative status in wild animals, and even less about the role of population history in moulding ageing rates. We addressed these questions by means of a common garden experiment, using the Tyrrhenian tree frog Hyla sarda as the study species. This species underwent a range expansion from northern Sardinia (source) up to Corsica (newly founded) during the Late Pleistocene, and then the two populations became geographically isolated. We found that, at the beginning of the experiment, Sardinian and Corsican frogs had similar concentrations of all oxidative status markers analysed. One year later, Corsican frogs had higher oxidative stress and suffered higher mortality than Sardinian frogs. Our results suggest the intriguing scenario that population differentiation in rates of physiological ageing owing to oxidative stress might be an overlooked legacy of past biogeographic processes.
Collapse
Affiliation(s)
- Anita Liparoto
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 57 rue Cuvier, 75005 Paris, France
| | - Daniele Canestrelli
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - Roberta Bisconti
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - Claudio Carere
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
10
|
Ducret V, Videlier M, Moureaux C, Bonneaud C, Herrel A. Do female frogs have higher resting metabolic rates than males? A case study with
Xenopus allofraseri. J Zool (1987) 2020. [DOI: 10.1111/jzo.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- V. Ducret
- Département Adaptations du Vivant UMR 7179 C.N.R.S/M.N.H.N. Paris France
| | - M. Videlier
- Functional Ecology Laboratory Department of Biology University of Ottawa Ottawa ON Canada
| | - C. Moureaux
- Département Adaptations du Vivant UMR 7179 C.N.R.S/M.N.H.N. Paris France
| | - C. Bonneaud
- Centre for Ecology & Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - A. Herrel
- Département Adaptations du Vivant UMR 7179 C.N.R.S/M.N.H.N. Paris France
| |
Collapse
|
11
|
Araspin L, Martinez AS, Wagener C, Courant J, Louppe V, Padilla P, Measey J, Herrel A. Rapid Shifts in the Temperature Dependence of Locomotor Performance in an Invasive Frog, Xenopus laevis, Implications for Conservation. Integr Comp Biol 2020; 60:456-466. [DOI: 10.1093/icb/icaa010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Temperature is a critical abiotic factor impacting all aspects of the biology of organisms, especially in ectotherms. As such, it is an important determinant of the potential invasive ability of organisms and may limit population expansion unless organisms can physiologically respond to changes in temperature either through plasticity or by adapting to their novel environment. Here, we studied the African clawed frog, Xenopus laevis, which has become invasive on a global scale. We compared adults from an invasive population of western France with individuals from two populations in the native range in South Africa. We measured the thermal dependence of locomotor performance in adults given its relevance to dispersal, predator escape, and prey capture. Our results show significant differences in the limits of the 80% performance breadth interval for endurance with the French population showing a left shift in its limits congruent with the colder climate experienced in France. The French invasive population was introduced only about 40 years ago suggesting a rapid shift in the thermal physiology. Given that all individuals were acclimated under laboratory conditions at 23°C for 2 months this suggests that the invasive frogs have adapted to their new environment. These data may allow the refinement of physiologically informed species distribution models permitting better estimates of future ranges at risk of invasion.
Collapse
Affiliation(s)
- Laurie Araspin
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Anna Serra Martinez
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Julien Courant
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
| | - Vivien Louppe
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National, d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75231 Paris, France
| | - Pablo Padilla
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic Science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Anthony Herrel
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
| |
Collapse
|
12
|
Videlier M, Rundle HD, Careau V. Sex-Specific Among-Individual Covariation in Locomotor Activity and Resting Metabolic Rate in Drosophila melanogaster. Am Nat 2019; 194:E164-E176. [PMID: 31738101 DOI: 10.1086/705678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A key endeavor in evolutionary physiology is to identify sources of among- and within-individual variation in resting metabolic rate (RMR). Although males and females often differ in whole-organism RMR due to sexual size dimorphism, sex differences in RMR sometimes persist after conditioning on body mass, suggesting phenotypic differences between males and females in energy-expensive activities contributing to RMR. One potential difference is locomotor activity, yet its relationship with RMR is unclear and different energy budget models predict different associations. We quantified locomotor activity (walking) over 24 h and RMR (overnight) in 232 male and 245 female Drosophila melanogaster that were either mated or maintained as virgins between two sets of measurements. Accounting for body mass, sex, and reproductive status, RMR and activity were significantly and moderately repeatable (RMR: R=0.33±0.06; activity: R=0.58±0.03). RMR and activity were positively correlated among (rind=0.26±0.09) but not within (re=0.05±0.06) individuals. Moreover, activity varied throughout the day and between the sexes. Partitioning our analysis by sex and activity by time of day revealed that all among-individual correlations were positive and significant in males but nonsignificant or even significantly negative in females. Such differences in the RMR-activity covariance suggest fundamental differences in how the sexes manage their energy budget.
Collapse
|
13
|
Padilla P, Courant J, Herrel A. Allocation trade-offs impact organ size and muscle architecture in an invasive population of Xenopus laevis in Western France. J Anat 2019; 235:1057-1064. [PMID: 31373390 DOI: 10.1111/joa.13063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2019] [Indexed: 11/28/2022] Open
Abstract
Invasive species are a global scourge and often negatively impact native species. Understanding the expansion and dispersal limits of these species is essential. As previous studies have demonstrated increased locomotor performance for populations at the edge of the range of expanding populations, studies of locomotion including the anatomical and physiological traits underlying dispersal capacity are of interest. We focus here on an invasive population of Xenopus laevis introduced in France nearly forty years ago. Previous studies have demonstrated differences in mobility between populations from the centre and the edge of the invasive range, with individuals from the range edge possessing a higher endurance capacity. We test here whether range-edge frogs show anatomical differences in organs or muscles underlying these observed differences of performance. We dissected 10 males and 10 females from central and range-edge sites (40 animals in total) and measured the mass of their organs and the mass, the length, and the physiological cross-sectional area (PCSA) of 28 hind limb muscles. Our results show anatomical differences with individuals from the range edge possessing heavier, longer and more forceful muscles. Moreover, females from the range edge had a heavier heart but lighter stomach than those of the centre of the range. Future studies comparing the morphology between native and invasive populations in other regions or for other species will be especially insightful to better understand the possible adaptive changes in invasive populations and the limits on dispersal capacity.
Collapse
Affiliation(s)
- Pablo Padilla
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
| | - Julien Courant
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France.,Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| |
Collapse
|