1
|
Barros ALAN, Hamed A, Marani M, Moreira DC, Eaton P, Plácido A, Kato MJ, Leite JRSA. The Arsenal of Bioactive Molecules in the Skin Secretion of Urodele Amphibians. Front Pharmacol 2022; 12:810821. [PMID: 35095522 PMCID: PMC8795703 DOI: 10.3389/fphar.2021.810821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
Urodele amphibians (∼768 spp.), salamanders and newts, are a rich source of molecules with bioactive properties, especially those isolated from their skin secretions. These include pharmacological attributes, such as antimicrobial, antioxidant, vasoactive, immune system modulation, and dermal wound healing activities. Considering the high demand for new compounds to guide the discovery of new drugs to treat conventional and novel diseases, this review summarizes the characteristics of molecules identified in the skin of urodele amphibians. We describe urodele-derived peptides and alkaloids, with emphasis on their biological activities, which can be considered new scaffolds for the pharmaceutical industry. Although much more attention has been given to anurans, bioactive molecules produced by urodeles have the potential to be used for biotechnological purposes and stand as viable alternatives for the development of therapeutic agents.
Collapse
Affiliation(s)
- Ana L A N Barros
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Medicina Tropical, PPGMT, Núcleo de Medicina Tropical, NMT, Faculdade de Medicina, UnB, Brasília, Brazil
| | - Abdelaaty Hamed
- Instituto de Química, IQ, Universidade de São Paulo, São Paulo, Brazil.,Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Mariela Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Argentina
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Joseph Banks Laboratories, The Bridge, School of Chemistry, University of Lincoln, Lincoln, United Kingdom
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Bioprospectum, Lda, UPTEC, Porto, Portugal
| | - Massuo J Kato
- Instituto de Química, IQ, Universidade de São Paulo, São Paulo, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Medicina Tropical, PPGMT, Núcleo de Medicina Tropical, NMT, Faculdade de Medicina, UnB, Brasília, Brazil.,Bioprospectum, Lda, UPTEC, Porto, Portugal
| |
Collapse
|
2
|
de Rysky E, Roberta B, Andrea C, Daniele C. Measuring athletic performance in post-metamorphic fire salamanders. BMC Res Notes 2021; 14:399. [PMID: 34702356 PMCID: PMC8549336 DOI: 10.1186/s13104-021-05808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Athletic performances are dynamic movements that are physically challenging and often predict individual success in ecological contexts. They stem from a complex integration of multiple phenotypic traits-e.g., morphological, physiological and behavioural-that dictate animal survival and individual fitness. However, directly quantifying athletic performances can be particularly challenging in cryptic, slow-moving species or not very reactive in attitude. Here we present and describe a rapid, simple, and low-cost method to measure athletic performance in post-metamorphic individuals of the fire salamander Salamandra salamandra. While extremely reactive during the larval stage, adult salamanders are, in fact, cryptic and relatively slow-moving. RESULTS Forcing terrestrial juveniles to swim under standard, albeit ecologically plausible, laboratory conditions, and using an automatic point-mass tracking tool, we were able to measure maximal and average performance indicators of post-metamorphic individuals. This method avoids inter-individual variation in motivation, as it forces individuals to perform at their best. Moreover, with this method, measures of athletic performance will be directly comparable between larval and terrestrial stages, allowing to study the contribution of carryover effects to the wide range of processes implicated in the eco-evo-devo of athletic performance in salamanders.
Collapse
Affiliation(s)
- Erica de Rysky
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| | - Bisconti Roberta
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy.
| | - Chiocchio Andrea
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| | - Canestrelli Daniele
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| |
Collapse
|
3
|
Vasconcelos IAD, Souza JOD, de Castro JS, Santana CJCD, Magalhães ACM, Castro MDS, Pires Júnior OR. Salamanders and caecilians, neglected from the chemical point of view. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1977326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Carlos José Correia de Santana
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Mariana de Souza Castro
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
4
|
White TE, Umbers KDL. Meta-analytic evidence for quantitative honesty in aposematic signals. Proc Biol Sci 2021; 288:20210679. [PMID: 33906408 PMCID: PMC8080005 DOI: 10.1098/rspb.2021.0679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
The combined use of noxious chemical defences and conspicuous warning colours is a ubiquitous anti-predator strategy. That such signals advertise the presence of defences is inherent to their function, but their predicted potential for quantitative honesty-the positive scaling of signal salience with the strength of protection-is the subject of enduring debate. Here, we systematically synthesized the available evidence to test this prediction using meta-analysis. We found evidence for a positive correlation between warning colour expression and the extent of chemical defences across taxa. Notably, this relationship held at all scales; among individuals, populations and species, though substantial between-study heterogeneity remains unexplained. Consideration of the design of signals revealed that all visual features, from colour to contrast, were equally informative of the extent of prey defence. Our results affirm a central prediction of honesty-based models of signal function and narrow the scope of possible mechanisms shaping the evolution of aposematism. They suggest diverse pathways to the encoding and exchange of information, while highlighting the need for deeper knowledge of the ecology of chemical defences to enrich our understanding of this widespread anti-predator adaptation.
Collapse
Affiliation(s)
- Thomas E. White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2106, Australia
| | - Kate D. L. Umbers
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
5
|
DE Meester G, Šunje E, Prinsen E, Verbruggen E, VAN Damme R. Toxin variation among salamander populations: discussing potential causes and future directions. Integr Zool 2020; 16:336-353. [PMID: 32965720 DOI: 10.1111/1749-4877.12492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphibians produce defensive chemicals which provide protection against both predators and infections. Within species, populations can differ considerably in the composition and amount of these chemical defenses. Studying intraspecific variation in toxins and linking it to environmental variables may help us to identify the selective drivers of toxin evolution, such as predation pressure and infection risk. Recently, there has been a renewed interest in the unique toxins produced by salamanders from the genus Salamandra: the samandarines. Despite this attention, intraspecific variation has largely been ignored within Salamandra-species. The aim of this study was to investigate whether geographic variation in profiles of samandarines exists, by sampling 4 populations of Salamandra atra over its range in the Dinaric Alps. In addition, we preliminary explored whether potential variation could be explained by predation (counting the number of snake species) and infection risk (cultivation and genomic analyses of collected soil samples). Salamanders from the 4 populations differed in toxin composition and in the size of their poison glands, although not in overall toxin quantity. Nor predation nor infection risk could explain this variation, as populations barely differed in these variables. Sampling over a much broader geographic range, using better estimators for predation and infection risk, will contribute to an improved understanding of how environment may shape variation in chemical defenses. Nevertheless, as the 4 populations of S. atra did differ in their toxin profiles, we propose that this species provides an interesting opportunity for further ecological and evolutionary studies on amphibian toxins.
Collapse
Affiliation(s)
- Gilles DE Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| | - Emina Šunje
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, Bosnia-Hercegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, Bosnia-Hercegovina
| | - Els Prinsen
- Department of Biology, Impress, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Department of Biology, Plant and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Raoul VAN Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S, Burgess K, Mable BK, Elmer KR. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol Ecol 2020; 29:1284-1299. [PMID: 32159878 DOI: 10.1111/mec.15411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs-ancestral black-yellow striped, fully yellow and fully brown-differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype-phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and 'omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stefan K Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen M Gunter
- Edinburgh Genomics, King's Buildings, University of Edinburgh, Edinburgh, UK
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karl Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Knepper J, Lüddecke T, Preißler K, Vences M, Schulz S. Isolation and Identification of Alkaloids from Poisons of Fire Salamanders ( Salamandra salamandra). JOURNAL OF NATURAL PRODUCTS 2019; 82:1319-1324. [PMID: 31074997 DOI: 10.1021/acs.jnatprod.9b00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fire salamanders ( Salamandra salamandra) are conspicuously colored amphibians secreting a skin poison that contains unique steroid alkaloids such as samandarine (1) and samadarone (2), exhibiting toxic as well as antimicrobial activities. Because of their antipredatory and anti-infectious functions, alkaloids from Salamandra poison are of interest with regard to the threat that the lethal fungus Batrachochytrium salamandrivorans ( Bsal) poses to salamanders. Nevertheless, reliable data on the biological activity of Salamandra alkaloids are scarce, in part due to the difficulty to obtain and study those substances. Thus, isolation of pure salamander alkaloids is an important task that might directly contribute to the understanding of Bsal infections. Here we present a noninvasive isolation procedure for samandarine (1) and O-acetylsamandarine (3), as well as for two new alkaloids, O-3-hydroxybutanoylsamandarine (4) and samanone (6), using HPLC. For the first time, high-field NMR data are presented for these alkaloids. Analysis using GC/MS and ESI+-MS, provided important information on the structural variability of these salamander alkaloids.
Collapse
Affiliation(s)
- Janosch Knepper
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Tim Lüddecke
- Animal Venomics Research Group , Fraunhofer Institute for Molecular Biology and Applied Ecology , Winchesterstraße 2 , 35394 Gießen , Germany
- Zoological Institute , Technische Universität Braunschweig , Mendelssohnstraße 4 , 38106 Braunschweig , Germany
| | - Kathleen Preißler
- Zoological Institute , Technische Universität Braunschweig , Mendelssohnstraße 4 , 38106 Braunschweig , Germany
| | - Miguel Vences
- Zoological Institute , Technische Universität Braunschweig , Mendelssohnstraße 4 , 38106 Braunschweig , Germany
| | - Stefan Schulz
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| |
Collapse
|