1
|
Figueroa‐Corona L, Moreno‐Letelier A, Ortega‐Del Vecchyo D, Peláez P, Gernandt DS, Eguiarte LE, Wegrzyn J, Piñero D. Changes in demography and geographic distribution in the weeping pinyon pine ( Pinus pinceana) during the Pleistocene. Ecol Evol 2022; 12:e9369. [PMID: 36225821 PMCID: PMC9534753 DOI: 10.1002/ece3.9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022] Open
Abstract
Climate changes, together with geographical barriers imposed by the Sierra Madre Oriental and the Chihuahuan Desert, have shaped the genetic diversity and spatial distribution of different species in northern Mexico. Pinus pinceana Gordon & Glend. tolerates extremely arid conditions. Northern Mexico became more arid during the Quaternary, modifying ecological communities. Here, we try to identify the processes underlying the demographic history of P. pinceana and characterize its genetic diversity using 3100 SNPs from genotyping by sequencing 90 adult individuals from 10 natural populations covering the species' entire geographic distribution. We inferred its population history and contrasted possible demographic scenarios of divergence that modeled the genetic diversity present in this restricted pinyon pine; in support, the past distribution was reconstructed using climate from the Last Glacial Maximum (LGM, 22 kya). We inferred that P. pinceana diverged into two lineages ~2.49 Ma (95% CI 3.28-1.62), colonizing two regions: the Sierra Madre Oriental (SMO) and the Chihuahuan Desert (ChD). Our results of population genomic analyses reveal the presence of heterozygous SNPs in all populations. In addition, low migration rates across regions are probably related to glacial-interglacial cycles, followed by the gradual aridification of the Chihuahuan Desert during the Holocene.
Collapse
Affiliation(s)
- Laura Figueroa‐Corona
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | | | - Diego Ortega‐Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
| | - Pablo Peláez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - David S. Gernandt
- Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Luis E. Eguiarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Daniel Piñero
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
2
|
Martínez de León R, Castellanos-Morales G, Moreno-Letelier A. Incipient speciation, high genetic diversity, and ecological divergence in the alligator bark juniper suggest complex demographic changes during the Pleistocene. PeerJ 2022; 10:e13802. [PMID: 35910768 PMCID: PMC9336613 DOI: 10.7717/peerj.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
The most recent glacial cycles of the Pleistocene affected the distribution, population sizes, and levels of genetic structure of temperate-forest species in the main Mexican mountain systems. Our objective was to investigate the effects these cycles had on the genetic structure and distribution of a dominant species of the "mexical" vegetation across North and Central America. We studied the genetic diversity of Juniperus deppeana, a conifer distributed from the Southwestern United States to the highlands of Central America. We combined information of one plastid marker and two nuclear markers to infer phylogeographic structure, genetic diversity and demographic changes. We also characterized the climatic niche for each variety to infer the plausible area of suitability during past climatic conditions and to evaluate climatic niche discontinuities along with the species distribution. We found a marked phylogeographic structure separating the populations North and South of the Isthmus of Tehuantepec, with populations to the South of this barrier forming a distinct genetic cluster corresponding to Juniperus deppeana var. gamboana. We also found signals of population expansion in the Northern genetic cluster. Ecological niche modeling results confirmed climatic niche differences and discontinuities among J. deppeana varieties and heterogeneous responses to climatic oscillations. Overall, J. deppeana's genetic diversity has been marked by distribution shifts, population growth and secondary contact the North, and in situ permanence in the South since the last interglacial to the present. High genetic variation suggests a wide and climatically diverse distribution during climatic oscillations. We detected the existence of two main genetic clusters, supporting previous proposals that Juniperus deppeana and Juniperus gamboana may be considered two separate species.
Collapse
Affiliation(s)
- Rodrigo Martínez de León
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico,Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandra Moreno-Letelier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Vázquez-Miranda H, Zink RM, Pinto BJ. Comparative phylogenomic patterns in the Baja California avifauna, their conservation implications, and the stages in lineage divergence. Mol Phylogenet Evol 2022; 171:107466. [DOI: 10.1016/j.ympev.2022.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/22/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
4
|
Zhao Z, Yang L, Long J, Chang Z, Zhou Z, Zhi Y, Yang L, Li H, Sui Y, Gong N, Wang X, Chen X. Endemism Patterns of Planthoppers (Fulgoroidea) in China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.683722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on endemism are always of high interest in biogeography and contribute to better understanding of the evolution of species and making conservation plans. The present study aimed to investigate the endemism patterns of planthoppers in China by delimiting centers of endemism and areas of endemism. We collected 6,907 spatial distribution records for 860 endemic planthopper species from various resources. Centers of endemism were identified using weighted endemism values at 1° grid size. Parsimony analysis of endemicity and endemicity analysis were employed to detect areas of endemism at 1°, 1.5°, and 2° grid sizes. Six centers of endemism located in mountainous areas were identified: Taiwan Island, Hainan Island, eastern Yungui Plateau, Wuyi Mountains, western Qinling Mountains, and western Yunnan. We also delimited six areas of endemism, which were generally consistent with centers of endemism. Our findings demonstrated that mountainous areas have an essential role in facilitating the high level of endemism and formation of areas of endemism in planthoppers through the combined effects of complex topography, a long-term stable environment, and geological events. Dispersal ability and distribution of host plants also have important effects on the patterns of planthoppers’ endemism.
Collapse
|
5
|
Aquino D, Moreno‐Letelier A, González‐Botello MA, Arias S. The importance of environmental conditions in maintaining lineage identity in Epithelantha (Cactaceae). Ecol Evol 2021; 11:4520-4531. [PMID: 33976827 PMCID: PMC8093668 DOI: 10.1002/ece3.7347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
The use of environmental variables to explain the evolution of lineages has gained relevance in recent studies. Additionally, it has allowed the recognition of species by adding more characters to morphological and molecular information. This study focuses on identifying environmental and landscape variables that have acted as barriers that could have influenced the evolution of Epithelantha species and its close genera.Our results show that soil pH, isothermality, temperature seasonality, and annual precipitation have a significant phylogenetic signal for Epithelantha. Soil type and landforms are also relevant as ecological barriers that maintain the identity of Epithelantha species.The variables associated with the soil (pH) have influenced the evolution of Epithelantha and probably in other genera of Cactaceae. Additionally, Epithelantha is frequent in the piedmont and haplic kastanozems. Bioclimatic variables reinforce the recognition of E. micromeris, and E. cryptica as independent species. Therefore, ecology can be considered as a factor to explain the high level of endemism in Cactaceae.
Collapse
Affiliation(s)
- David Aquino
- Jardín BotánicoInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | | | | | - Salvador Arias
- Jardín BotánicoInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
6
|
Díaz‐Cárdenas B, Ruiz‐Sanchez E, Gadsden H, García‐Enriquez JM, Castro‐Felix P, Castañeda‐Gaytán G, Santerre A. Physiographic and climatic events in the Chihuahuan Desert lead to the speciation and distinct demographic patterns of two sister Sceloporuslizards. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brenda Díaz‐Cárdenas
- Red de Diversidad Biológica del Occidente Mexicano Instituto de Ecología A. C., Centro Regional del Bajío Pátzcuaro México
- Departamento de Ecología Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara Zapopan México
| | - Eduardo Ruiz‐Sanchez
- Departamento de Botánica y Zoología Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara Zapopan México
| | - Héctor Gadsden
- Red de Diversidad Biológica del Occidente Mexicano Instituto de Ecología A. C., Centro Regional del Bajío Pátzcuaro México
| | - José Manuel García‐Enriquez
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara Zapopan México
| | - Patricia Castro‐Felix
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara Zapopan México
| | | | - Anne Santerre
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara Zapopan México
| |
Collapse
|
7
|
Dowding EM, Ebach MC, Mavrodiev EV. Temporal area approach for distributional data in biogeography. Cladistics 2019; 35:435-445. [PMID: 34633694 DOI: 10.1111/cla.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 11/28/2022] Open
Abstract
A structural approach to temporality in distributional data for use in palaeobiogeography is described herein. Pre-established areas in the distributional data matrix are split temporally, allowing a single geographical space to have multiple iterations [e.g. Area A (Lower Devonian), Area A (Middle Devonian)]. The resulting temporal matrix will allow the representation and capture of any differing relationships through time. Designed primarily for Parsimony Analysis of Endemicity (PAE) and biotic similarity analyses, this approach simply structures distributional data within a temporal partition, meaning that numerical methods can be used to assess relationships between areas to find a branching diagram. Created through the application of the temporal matrix to a given analysis, Temporal Area Approach (TAAp) is a structural approach that facilitates exploration of the data rather than being a hypothesis-driven model following analysis. Understanding the behaviour of non-phylogenetic palaeobiogeographical data and reducing the prevalence of temporal artefacts will lead to more robust area classifications.
Collapse
Affiliation(s)
- Elizabeth M Dowding
- Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Malte C Ebach
- Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Evgeny V Mavrodiev
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Castellanos-Morales G, Paredes-Torres LM, Gámez N, Hernández-Rosales HS, Sánchez-de la Vega G, Barrera-Redondo J, Aguirre-Planter E, Vázquez-Lobo A, Montes-Hernández S, Lira-Saade R, Eguiarte LE. Historical biogeography and phylogeny of Cucurbita: Insights from ancestral area reconstruction and niche evolution. Mol Phylogenet Evol 2018; 128:38-54. [DOI: 10.1016/j.ympev.2018.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
|