1
|
Böning P, Lötters S, Barzaghi B, Bock M, Bok B, Bonato L, Ficetola GF, Glaser F, Griese J, Grabher M, Leroux C, Munimanda G, Manenti R, Ludwig G, Preininger D, Rödel MO, Seibold S, Smith S, Tiemann L, Thein J, Veith M, Plewnia A. Alpine salamanders at risk? The current status of an emerging fungal pathogen. PLoS One 2024; 19:e0298591. [PMID: 38758948 PMCID: PMC11101120 DOI: 10.1371/journal.pone.0298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 05/19/2024] Open
Abstract
Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.
Collapse
Affiliation(s)
- Philipp Böning
- Department of Biogeography, Trier University, Trier, Germany
| | - Stefan Lötters
- Department of Biogeography, Trier University, Trier, Germany
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Marvin Bock
- Department of Biogeography, Trier University, Trier, Germany
| | - Bobby Bok
- St. Michael College, Zaandam, Netherlands
| | - Lucio Bonato
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| | | | | | | | | | - Camille Leroux
- Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
- Auddicé Biodiversité–ZAC du Chevalement, Roost-Warendin, France
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gopikrishna Munimanda
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | | | | | - Mark-Oliver Rödel
- Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sebastian Seibold
- Forest Zoology, Technische Universität Dresden, Tharandt, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Laura Tiemann
- Department of Neurology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Thein
- Büro für Faunistik und Umweltbildung, Haßfurt, Germany
| | - Michael Veith
- Department of Biogeography, Trier University, Trier, Germany
| | - Amadeus Plewnia
- Department of Biogeography, Trier University, Trier, Germany
| |
Collapse
|
2
|
Rota F, Carnicero P, Casazza G, Nascimbene J, Schönswetter P, Wellstein C. Survival in nunatak and peripheral glacial refugia of three alpine plant species is partly predicted by altitudinal segregation. Mol Ecol 2024; 33:e17343. [PMID: 38596873 DOI: 10.1111/mec.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.
Collapse
Affiliation(s)
- Francesco Rota
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pau Carnicero
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gabriele Casazza
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Juri Nascimbene
- BIOME Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
3
|
Rato C, Deso G, Renet J, Delaugerre MJ, Marques V, Mochales-Riaño G. Colonization routes uncovered in a widely introduced Mediterranean gecko, Tarentola mauritanica. Sci Rep 2023; 13:16681. [PMID: 37794160 PMCID: PMC10551029 DOI: 10.1038/s41598-023-43704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
In this study, we aimed to understand the contemporary and ancient colonization routes of the Moorish gecko, Tarentola mauritanica, using simple sequence repeats. By analyzing the genetic diversity of populations in different regions, we found that Morocco is the genetic diversity hotspot for the species, followed by the Iberian Peninsula. However, historical gene flow estimates identified the Iberian Peninsula, not Morocco, as the primary contributor of colonizing individuals, along with continental Italy to a lesser extent. Currently, mainland Italy is the main source of introduced individuals, likely due to the plant nursery trade. The study suggests that human-facilitated introductions from various geographical origins, with numerous regions colonized through continental Italy during two distinct periods, are responsible for the recurrent entry of individuals belonging to the European lineage of T. mauritanica into the Mediterranean and Macaronesia. These findings can inform better monitoring surveys and conservation programs by identifying putative current colonization routes of alien species.
Collapse
Affiliation(s)
- Catarina Rato
- CIBIO - Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661, Vila do Conde, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Gregory Deso
- Ahpam (Association herpétologique de Provence Alpes Méditerranée), Maison des Associations 384 Route de Caderousse, 84100, Orange, France
| | - Julien Renet
- Fauna Studium, Scientific Consulting, 04290, Salignac, France
| | - Michel Jean Delaugerre
- Conservatoire du littoral. Résidence Saint Marc, Rue du Juge Falcone, 20200, Bastia, France
| | - Valéria Marques
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Gabriel Mochales-Riaño
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig de la Barceloneta 37-49, 08003, Barcelona, Spain
| |
Collapse
|
4
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Lester JD, Vigilant L, Gratton P, McCarthy MS, Barratt CD, Dieguez P, Agbor A, Álvarez-Varona P, Angedakin S, Ayimisin EA, Bailey E, Bessone M, Brazzola G, Chancellor R, Cohen H, Danquah E, Deschner T, Egbe VE, Eno-Nku M, Goedmakers A, Granjon AC, Head J, Hedwig D, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kehoe L, Kienast I, Langergraber KE, Lapuente J, Laudisoit A, Lee K, Marrocoli S, Mihindou V, Morgan D, Muhanguzi G, Neil E, Nicholl S, Orbell C, Ormsby LJ, Pacheco L, Piel A, Robbins MM, Rundus A, Sanz C, Sciaky L, Siaka AM, Städele V, Stewart F, Tagg N, Ton E, van Schijndel J, Vyalengerera MK, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Zuberbuehler K, Boesch C, Kühl HS, Arandjelovic M. Recent genetic connectivity and clinal variation in chimpanzees. Commun Biol 2021; 4:283. [PMID: 33674780 PMCID: PMC7935964 DOI: 10.1038/s42003-021-01806-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Much like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated.
Collapse
Affiliation(s)
- Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paolo Gratton
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Maureen S McCarthy
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Paula Álvarez-Varona
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | | | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Josephine Head
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Daniela Hedwig
- Elephant Listening Project, Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Jessica Junker
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Ammie K Kalan
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Laura Kehoe
- Wild Chimpanzee Foundation (WCF), Leipzig, Germany
| | - Ivonne Kienast
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, Tempe, AZ, USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Comoé Chimpanzee Conservation Project, Comoé National Park, Kakpin, Côte d'Ivoire
| | - Anne Laudisoit
- Ecohealth Alliance, New York, NY, USA
- University of Antwerp, Campus Drie Eiken, lokaal D.133, Universiteitsplein 1 - 2610, Antwerpen, Belgium
| | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sergio Marrocoli
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Vianet Mihindou
- Agence National des Parcs Nationaux (ANPN) Batterie 4, Libreville, Gabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement, Chargé du Plan Climat, des Objectifs de Développement Durable et du Plan d'Affectation des Terres, Libreville, Gabon
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | | | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | | | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Liliana Pacheco
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Alex Piel
- Department of Anthropology, University College London, London, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Aaron Rundus
- West Chester University, Department of Psychology, West Chester, PA, USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Alhaji M Siaka
- National Protected Area Authority, Freetown, Sierra Leone
| | - Veronika Städele
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Fiona Stewart
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Els Ton
- Chimbo Foundation, Amsterdam, Netherlands
| | | | | | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- Pan Verus Project Outamba-Kilimi National Park, Freetown, Sierra Leone
| | - Klaus Zuberbuehler
- Budongo Conservation Field Station, Masindi, Uganda
- Université de Neuchâtel, Institut de Biologie, Neuchâtel, Switzerland
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Christophe Boesch
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
| | - Hjalmar S Kühl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Leipzig, Germany.
| |
Collapse
|
6
|
Dufresnes C, Rodrigues N, Savary R. Slow and steady wins the race: contrasted phylogeographic signatures in two Alpine amphibians. Integr Zool 2021; 17:181-190. [PMID: 33433936 DOI: 10.1111/1749-4877.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A deeper phylogeographic structure is expected for slow-dispersing habitat specialists compared to widespread adaptable species, especially in topographically complex regions. We tested this classic assumption by comparing the genomic (RAD-sequencing) phylogeographies of two amphibians inhabiting the Swiss Alps: the mobile, cosmopolitan common frog (Rana temporaria) against the stationary, mountain endemic Alpine salamander (Salamandra atra). Our results ran opposite of predictions: the frog displayed significantly higher genetic divergences and lower within-population variation compared to the salamander. This implies a prominent role for their distinctive glacial histories in shaping intraspecific diversity and structure: diversification and recolonization from several circum-Alpine micro-refugia for the frog versus a single refugium for the salamander, potentially combined with better population connectivity and stability. These striking differences emphasize the great variability of phylogeographic responses to the Quaternary glaciations, hence the complexity to predict general patterns of genetic diversity at the regional scale, and the forces that underlie them.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Romain Savary
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR. Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol Phylogenet Evol 2020; 157:107063. [PMID: 33387650 DOI: 10.1016/j.ympev.2020.107063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/09/2023]
Abstract
The salamander genus Salamandra is widespread across Europe, North Africa, and the Near East and is renowned for its conspicuous and polymorphic colouration and diversity of reproductive modes. The phylogenetic relationships within the genus, and especially in the highly polymorphic species S. salamandra, have been very challenging to elucidate, leaving its real evolutionary history and classification at species and subspecies levels a topic of debate and contention. However, the distribution of diversity and species delimitation within the genus are critically important for identifying evolutionarily significant units for conservation and management, especially in light of threats posed by the pathogenic chytrid fungus Batrachochytrium salamandrivorans that is causing massive declines of S. salamandra populations in central Europe. Here, we conducted a phylogenomic analysis from across the taxonomic and geographic breadth of the genus Salamandra in its entire range. Bayesian, maximum likelihood and network-based phylogenetic analyses of up to 4905 ddRADseq-loci (294,300 nucleotides of sequence) supported the distinctiveness of all currently recognised species (Salamandra algira, S. atra, S. corsica, S. infraimmaculata, S. lanzai, and S. salamandra), and all five species for which we have multiple exemplars were confirmed as monophyletic. Within S. salamandra, two main clades can be distinguished: one clade with the Apenninic subspecies S. s. gigliolii nested within the Iberian S. s. bernardezi/fastuosa; and a second clade comprising all other Iberian, Central and East European subspecies. Our analyses revealed that some of the currently recognized subspecies of S. salamandra are paraphyletic and may require taxonomic revision, with the Central- and Eastern-European subspecies all being poorly differentiated at the analysed genomic markers. Salamandra s. longirostris - sometimes considered a separate species - was nested within S. salamandra, consistent with its subspecies status. The relationships identified within and between Salamandra species provide valuable context for future systematic and biogeographic studies, and help elucidate critical evolutionary units for conservation and taxonomy.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Sebastian Steinfartz
- Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | - Lucio Bonato
- Department of Biology, University of Padova, Via Bassi 58B, 35131 Padova, Italy
| | - David Donaire-Barroso
- Asociación Herpetológica Fretum Gaditanum, Calle Mar Egeo 7, 11407 Jerez de la Frontera, Spain
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C./ José Gutiérrez Abascal n°2, 28006 Madrid, Spain
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas n° 7, 4485-661 Vairão, Portugal; Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, 36310 Vigo, Spain
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C./ José Gutiérrez Abascal n°2, 28006 Madrid, Spain
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
DE Meester G, Šunje E, Prinsen E, Verbruggen E, VAN Damme R. Toxin variation among salamander populations: discussing potential causes and future directions. Integr Zool 2020; 16:336-353. [PMID: 32965720 DOI: 10.1111/1749-4877.12492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphibians produce defensive chemicals which provide protection against both predators and infections. Within species, populations can differ considerably in the composition and amount of these chemical defenses. Studying intraspecific variation in toxins and linking it to environmental variables may help us to identify the selective drivers of toxin evolution, such as predation pressure and infection risk. Recently, there has been a renewed interest in the unique toxins produced by salamanders from the genus Salamandra: the samandarines. Despite this attention, intraspecific variation has largely been ignored within Salamandra-species. The aim of this study was to investigate whether geographic variation in profiles of samandarines exists, by sampling 4 populations of Salamandra atra over its range in the Dinaric Alps. In addition, we preliminary explored whether potential variation could be explained by predation (counting the number of snake species) and infection risk (cultivation and genomic analyses of collected soil samples). Salamanders from the 4 populations differed in toxin composition and in the size of their poison glands, although not in overall toxin quantity. Nor predation nor infection risk could explain this variation, as populations barely differed in these variables. Sampling over a much broader geographic range, using better estimators for predation and infection risk, will contribute to an improved understanding of how environment may shape variation in chemical defenses. Nevertheless, as the 4 populations of S. atra did differ in their toxin profiles, we propose that this species provides an interesting opportunity for further ecological and evolutionary studies on amphibian toxins.
Collapse
Affiliation(s)
- Gilles DE Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| | - Emina Šunje
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, Bosnia-Hercegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, Bosnia-Hercegovina
| | - Els Prinsen
- Department of Biology, Impress, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Department of Biology, Plant and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Raoul VAN Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Alcaraz C, Gholami Z. Diversity and structure of fragmented populations of a threatened endemic cyprinodontid ( Aphanius sophiae) inferred from genetics and otolith morphology: Implications for conservation and management. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Zeinab Gholami
- Department of Biology University of Isfahan Isfahan Iran
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology & GeoBio‐Center LMU Ludwig‐Maximilians‐University Munich Germany
| |
Collapse
|