1
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
2
|
Tian L, Xu R, Chen D, Ananjeva NB, Brown RM, Min MS, Cai B, Mijidsuren B, Zhang B, Guo X. Range-Wide Phylogeography and Ecological Niche Modeling Provide Insights into the Evolutionary History of the Mongolian Racerunner ( Eremias argus) in Northeast Asia. Animals (Basel) 2024; 14:1124. [PMID: 38612363 PMCID: PMC11011046 DOI: 10.3390/ani14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Natalia B. Ananjeva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia;
| | - Rafe M. Brown
- Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea;
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Byambasuren Mijidsuren
- Plant Protection Research Institute, Mongolian University of Life Sciences, Ulaanbaatar 210153, Mongolia;
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| |
Collapse
|
3
|
Orlova VF, Rasegar-Pouyani E, Rajabizadeh K, Nabizadeh H, Poyarkov NA, Melnikov DA, Nazarov RA. Taxonomic diversity of racerunners with descriptions of two new Eremias species (Sauria: Lacertidae) from Central Iran. Zootaxa 2023; 5369:336-368. [PMID: 38220710 DOI: 10.11646/zootaxa.5369.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/16/2024]
Abstract
We provide a diversity assessment of Iranian species of the genus Eremias based on the cytochrome oxidase I mtDNA gene fragment. We analyzed 93 genetic samples from the entire distribution of the Eremias fasciata species complex in Iran and surrounding regions, along with morphological data to support the description of two new species from Central Iran. We hypothesize that the diversification of the Eremias fasciata species complex was largely influenced by the fragmentation of sand massifs in the region. This same hypothesis has been used to explain the high level of endemism among the sand-dwelling species of reptiles along the Iranian Plateau in the same area. The two new species described herein can be distinguished from other congeneric species by their phylogenetic position and a combination of morphological characters. We use these data to discuss the taxonomy of Eremias based on morphology, habitat choice, and genetic data.
Collapse
Affiliation(s)
- Valentina F Orlova
- Zoological Museum of Moscow State University; 125009; B. Nikitskaya 2; Moscow; Russia; Zoological Institute of the Russian Academy of Sciences; Universitetskaya nab. 1; St. Petersburg; 199034; Russia; Laboratory of Comparative Ethology and Biocommunication; Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences.; 119071 Leninsky Prospect 33; Moscow; Russia.
| | | | - Khosrow Rajabizadeh
- Department of Biodiversity; Institute of Science and High Technology and Environmental Sciences; Graduate University of Advanced Technology; Kerman; Iran.
| | - Hossein Nabizadeh
- Department of Biology; Faculty of sciences; University of Qom; Qom; Iran.
| | - Nikolay A Poyarkov
- Faculty of Biology; Lomonosov Moscow State University; Moscow 119991; Russia.
| | - Daniel A Melnikov
- Zoological Institute of the Russian Academy of Sciences; Universitetskaya nab. 1; St. Petersburg; 199034; Russia.
| | - Roman A Nazarov
- Zoological Museum of Moscow State University; 125009; B. Nikitskaya 2; Moscow; Russia; Laboratory of Comparative Ethology and Biocommunication; Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences.; 119071 Leninsky Prospect 33; Moscow; Russia.
| |
Collapse
|
4
|
Guo X, Huo X, Liu J, Chirikova MA. Complete mitochondrial genome of the Kyrghyz racerunner ( Eremias nikolskii Bedriaga, 1905) from Kyrgyzstan. Mitochondrial DNA B Resour 2022; 7:983-985. [PMID: 35712537 PMCID: PMC9196650 DOI: 10.1080/23802359.2022.2080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The complete mitochondrial genome (mitogenome) of the Kyrghyz racerunner (Eremias nikoskii Bedriaga, 1905) from Kyrgyzstan was determined for the first time by next-generation sequencing. The mitogenome was 20,840 bp in length and comprised the standard set of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The 13 concatenated PCGs were used to implement Bayesian phylogenetic analyses together with some congeners and three representative lacertids retrieved from GenBank. The monophyly of both Eremias and its viviparous group was recovered in the Bayesian phylogenetic tree, while the subgenus Pareremias was paraphyletic with respect to E. nikoskii. The mitogenome of E. nikoskii will faciliate the research on species delimitation, molecular evolution, and phylogenetic inference in the racerunner lizards.
Collapse
Affiliation(s)
- Xianguang Guo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaopeng Huo
- Research Institute of Safety, Environmental Protection and Technical Supervision, PetroChina Southwest Oil & Gasfield Company, Chengdu, China
| | - Jinlong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | |
Collapse
|
5
|
Tian L, Guo X. Complete Mitochondrial Genomes of Five Racerunners (Lacertidae: Eremias) and Comparison with Other Lacertids: Insights into the Structure and Evolution of the Control Region. Genes (Basel) 2022; 13:726. [PMID: 35627111 PMCID: PMC9141765 DOI: 10.3390/genes13050726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Comparative studies on mitochondrial genomes (mitogenomes) as well as the structure and evolution of the mitochondrial control region are few in the Lacertidae family. Here, the complete mitogenomes of five individuals of Eremias scripta (2 individuals), Eremias nikolskii, Eremias szczerbaki, and Eremias yarkandensis were determined using next-generation sequencing and were compared with other lacertids available in GenBank. The circular mitogenomes comprised the standard set of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and a long non-coding control region (CR). The extent of purifying selection was less pronounced for the COIII and ND2 genes in comparison with the rest of the PCGs. The codons encoding Leucine (CUN), Threonine, and Isolecucine were the three most frequently present. The secondary structure of rRNA of Lacertidae (herein, E. scripta KZL15 as an example) comprised four domains and 28 helices for 12S rRNA, with six domains and 50 helices for 16S rRNA. Five types and twenty-one subtypes of CR in Lacertidae were described by following the criteria of the presence and position of tandem repeats (TR), termination-associated sequence 1 (TAS1), termination-associated sequence 2 (TAS2), conserved sequence block 1 (CBS1), conserved sequence block 2 (CSB2), and conserved sequence block 3 (CSB3). The compositions of conserved structural elements in four genera, Acanthodactylus, Darevskia, Eremias, and Takydromus, were further explored in detail. The base composition of TAS2 - TATACATTAT in Lacertidae was updated. In addition, the motif "TAGCGGCTTTTTTG" of tandem repeats in Eremias and the motif "GCGGCTT" in Takydromus were presented. Nucleotide lengths between CSB2 and CSB3 remained 35 bp in Eremias and Darevskia. The phylogenetic analyses of Lacertidae recovered the higher-level relationships among the three subfamilies and corroborated a hard polytomy in the Lacertinae phylogeny. The phylogenetic position of E. nikolskii challenged the monophyly of the subgenus Pareremias within Eremias. Some mismatches between the types of CR and their phylogeny demonstrated the complicated evolutionary signals of CR such as convergent evolution. These findings will promote research on the structure and evolution of the CR and highlight the need for more mitogenomes in Lacertidae.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| |
Collapse
|
6
|
Masroor R, Idrees M, Khisroon M, Jamal Q, Jablonski D. Out of the blue: The first record of the genus Heremites Gray, 1845 (Squamata, Scincidae) from Pakistan. Zookeys 2021; 1039:123-138. [PMID: 34084066 PMCID: PMC8159914 DOI: 10.3897/zookeys.1039.64146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
The genus Heremites Gray, 1845 is endemic to the Western Palearctic region, containing morphologically similar species with a not well resolved taxonomy. The genus has a broad distribution from North Africa to Central Asia, with the only known record from northeastern Afghanistan. Three species are currently recognized in the genus with one, H.septemtaeniatus (Reuss, 1834), representing populations at the eastern edge of the genus range. During extensive fieldwork, we discovered H.septemtaeniatus from northwestern Pakistan and provisionally suggest that this population could be morphologically defined as H.septemtaeniatustranscaucasicus (Chernov, 1926). This important contribution to the knowledge regarding the family Scincidae in Pakistan, however, needs further investigation using an integrative approach.
Collapse
Affiliation(s)
- Rafaqat Masroor
- Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad-44000, Pakistan Pakistan Museum of Natural History Islamabad Pakistan
| | - Muhammad Idrees
- Department of Zoology, University of Peshawar, Peshawar, Pakistan University of Peshawar Peshawar Pakistan
| | - Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Pakistan University of Peshawar Peshawar Pakistan
| | - Qaisar Jamal
- Department of Zoology, University of Peshawar, Peshawar, Pakistan University of Peshawar Peshawar Pakistan
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia Comenius University Bratislava Slovakia
| |
Collapse
|