1
|
Cheng L, Li F, Li S, Lin C, Fu Q, Yin H, Tian F, Qu G, Wu J, Shen Z. A novel nicotinamide adenine dinucleotide control strategy for increasing the cell density of Haemophilus parasuis. Biotechnol Prog 2019; 35:e2794. [PMID: 30816004 DOI: 10.1002/btpr.2794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/12/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease and is a major source of economic losses in the swine industry each year. To enhance the production of an inactivated vaccine against H. parasuis, the availability of nicotinamide adenine dinucleotide (NAD) must be carefully controlled to ensure a sufficiently high cell density of H. parasuis. In the present study, the real-time viable cell density of H. parasuis was calculated based on the capacitance of the culture. By assessing the relationship between capacitance and viable cell density/NAD concentration, the NAD supply rate could be adjusted in real time to maintain the NAD concentration at a set value based on the linear relationship between capacitance and NAD consumption. The linear relationship between cell density and addition of NAD indicated that 7.138 × 109 NAD molecules were required to satisfy per cell growth. Five types of NAD supply strategy were used to maintain different NAD concentration for H. parasuis cultivation, and the results revealed that the highest viable cell density (8.57, OD600 ) and cell count (1.57 × 1010 CFU/mL) were obtained with strategy III (NAD concentration maintained at 30 mg/L), which were 1.46- and 1.45- times more, respectively, than cultures with using NAD supply strategy I (NAD concentration maintained at 10 mg/L). An extremely high cell density of H. parasuis was achieved using this NAD supply strategy, and the results demonstrated a convenient and reliable method for determining the real-time viable cell density relative to NAD concentration. Moreover, this method provides a theoretical foundation and an efficient approach for high cell density cultivation of other auxotroph bacteria.
Collapse
Affiliation(s)
- Likun Cheng
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Key Laboratory of Binzhou High Cell Density Fermentation, Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, China
| | - Feng Li
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Key Laboratory of Binzhou High Cell Density Fermentation, Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, China
| | - Shuguang Li
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Key Laboratory of Binzhou High Cell Density Fermentation, Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, China
| | - Chuwen Lin
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Qiang Fu
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Huanhuan Yin
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Fengrong Tian
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Guanggang Qu
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jiaqiang Wu
- Institution of Poultry, Shandong Academy of Agricultural Science, Jinan, China
| | - Zhiqiang Shen
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| |
Collapse
|
2
|
Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Protective Efficacy of an Inactive Vaccine Based on the LY02 Isolate against Acute Haemophilus parasuis Infection in Piglets. BIOMED RESEARCH INTERNATIONAL 2015; 2015:649878. [PMID: 26688815 PMCID: PMC4672103 DOI: 10.1155/2015/649878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
Haemophilus parasuis can cause Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer's disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage of H. parasuis (LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acute H. parasuis infection in piglets after inactivation. Following challenging with H. parasuis, only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer's disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4(+) and CD8(+) T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γ in sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection against H. parasuis infection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain of H. parasuis could serve as a potential vaccine candidate to prevent the prevalence of H. parasuis in Fujian province, China.
Collapse
|