1
|
Zhou J, Wang J, Zhou Y, Liu K, Lu Y, Zhu L, Chen X. Microbial community structure and interactions between Aspergillus oryzae and bacteria in traditional solid-state fermentation of Jiangqu. Food Microbiol 2023; 116:104346. [PMID: 37689429 DOI: 10.1016/j.fm.2023.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/11/2023]
Abstract
Microbial interactions play an important role in the formation, stabilization and functional performance of natural microbial communities. However, little is known about how the microbes present interactions to build a stable natural microbial community. Here, we developed Jiangqu, the solid-state fermented starters of thick broad-bean sauce formed naturally in factory, as model microbial communities by characterizing its diversity of microbial communities and batch stability. The dominant microbial strains and their fungi-bacteria interactions during solid-state fermentation of Jiangqu were characterized. In all batches of Jiangqu, Aspergillus oryzae, Bacillus, Staphylococcus and Weissella dominated in the communities and such a community structure could almost reduplicate between batches. Direct adsorption and competition were identified as the main interactions between A. oryzae and dominant bacteria during solid-state fermentation, which were quite different from liquid co-cultivation of A. oryzae and dominant bacteria. These results will help us better understand the intrinsic mechanism in the formation and stabilization of microbial communities from traditional solid-state qu-making and fermentation.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayan Wang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanlu Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kaiqiang Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Du R, Xiong W, Xu L, Xu Y, Wu Q. Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations. MICROBIOME 2023; 11:115. [PMID: 37210545 DOI: 10.1186/s40168-023-01536-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Fermented foods are considered to be beneficial for human health. Secondary metabolites determined by biosynthetic gene clusters (BGCs) are precious bioactive compounds with various biological activities. However, the diversity and distribution of the biosynthetic potential of secondary metabolites in global food fermentations remain largely unknown. In this study, we performed a large-scale and comprehensive investigation for the BGCs in global food fermentations by metagenomics analysis. RESULTS We recovered 653 bacterial metagenome-assembled genomes (MAGs) from 367 metagenomic sequencing datasets covering 15 general food fermentation types worldwide. In total, 2334 secondary metabolite BGCs, including 1003 novel BGCs, were identified in these MAGs. Bacillaceae, Streptococcaceae, Streptomycetaceae, Brevibacteriaceae and Lactobacillaceae contained high abundances of novel BGCs (≥ 60 novel BGCs). Among 2334 BGCs, 1655 were habitat-specific, originating from habitat-specific species (80.54%) and habitat-specific genotypes within multi-habitat species (19.46%) in different food fermentation types. Biological activity analysis suggested that 183 BGC-producing secondary metabolites exhibited high probabilities of antibacterial activity (> 80%). These 183 BGCs were distributed across all 15 food fermentation types, and cheese fermentation contained the most BGC number. CONCLUSIONS This study demonstrates that food fermentation systems are an untapped reservoir of BGCs and bioactive secondary metabolites, and it provides novel insights into the potential human health benefits of fermented foods. Video Abstract.
Collapse
Affiliation(s)
- Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wu Xiong
- Laboratory of Bio-Interactions and Crop Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lei Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Feng L, Gu J, Guo L, Mu G, Tuo Y. Safety evaluation and application of lactic acid bacteria and yeast strains isolated from Sichuan broad bean paste. Food Sci Nutr 2023; 11:940-952. [PMID: 36789042 PMCID: PMC9922144 DOI: 10.1002/fsn3.3129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Broad bean paste is one of the most popular characteristic traditional fermented bean products in China, which is prepared by mixed fermentation of a variety of microorganisms, among which lactic acid bacteria and yeast played an important role in the improvement of the fermented broad bean paste quality. However, the traditional open-air fermentation of broad bean paste brought some risks of harmful microorganisms. In this study, the safety and fermentation ability of lactic acid bacteria and yeast strains isolated from traditional broad bean paste was evaluated. The results showed that the protease activity of the strain Lactobacillus plantarum DPUL-J5 (366.73 ± 9.00 U/L) and Pichia kudriavzevii DPUY-J5 (237.18 ± 10.93 U/L) were the highest. Both strains produced little biogenic amines, and did not exhibit α-hemolytic activity or antibiotic resistance for some of the antibiotics most used in human medicine. Furthermore, the broad bean paste fermentation involving DPUL-J5 and DPUY-J5 was beneficial for accumulating higher total acid (1.69 ± 0.01 g/100 g), amino-acid nitrogen (0.85 ± 0.03 g/100 g), and more volatile flavor compounds, meanwhile, reducing the levels of biogenic amines and aflatoxin B1. Therefore, this study provided a new strategy to improve the safety and quality of traditional broad bean paste.
Collapse
Affiliation(s)
- Lu Feng
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Jinhong Gu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Linjie Guo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Guangqing Mu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Yanfeng Tuo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| |
Collapse
|
4
|
Li H, Lu ZM, Deng WQ, Zhang QS, Chen G, Li Q, Xu ZH, Ma YH. The differences between broad bean koji fermented in laboratory and factory conditions by an efficient Aspergillus oryzae. Front Microbiol 2023; 14:1139406. [PMID: 37032872 PMCID: PMC10074850 DOI: 10.3389/fmicb.2023.1139406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 04/11/2023] Open
Abstract
Broad bean paste-meju was fermented by a mixture of broad bean koji and saline; koji fermentation is an essential process for the production of broad bean paste-meju. Aspergillus oryzae was the most widely used in sauce fermentation. The purpose of this study was to research the factory adaptability of the highly efficient A. oryzae PNM003 and further evaluate the effect of fermentation conditions and fermentation strains on koji. A. oryzae PNM003 was compared with the widely used strain HN 3.042 not only in the laboratory but also in factory conditions (large scale). Results showed that the koji made with the same starter in the factory had a greater amount of fungi than that in the laboratory. Bacteria and yeast levels in HN_L koji were higher than in PN_L koji. As for fungi constitution, almost only Aspergillus survived in the end through the microorganism self-purification process during koji fermentation. As for the bacterial constitution, koji was grouped by fermentation conditions instead of fermentation starter. PN koji had higher protease activity and a higher content of total acids, amino acid nitrogen, amino acids, and organic acids in the laboratory conditions. Nevertheless, in factory conditions, PN koji and HN koji had similar indexes. As for volatile flavor compounds, koji made with the two starters in the same condition was grouped together. As for the same starter, there were more flavor compounds metabolized in the factory condition than in the laboratory condition, especially esters and alcohols. The results showed PN was a highly efficient strain to ferment koji, but the advantages were expressed more remarkably in laboratory conditions. In brief, the fermented condition had a greater influence than the fermentation starter for broad bean koji.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Wei-Qin Deng
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Qi-Sheng Zhang
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Gong Chen
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Zheng-Hong Xu
| | - Yan-He Ma
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Yan-He Ma
| |
Collapse
|
5
|
Yu S, Song J, Hu T, Wang J, Liu X, Zheng Y, Shi L, Wan S, Wang M. Unraveling the core functional bacteria and their succession throughout three fermentation stages of broad bean paste with chili. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zhao S, Niu C, Xing X, Fan L, Zheng F, Liu C, Wang J, Li Q. Revealing the changes of microbiota structure and function in broad bean paste mediated by sunlight and ventilation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Jia Y, Niu CT, Xu X, Zheng FY, Liu CF, Wang JJ, Lu ZM, Xu ZH, Li Q. Metabolic potential of microbial community and distribution mechanism of Staphylococcus species during broad bean paste fermentation. Food Res Int 2021; 148:110533. [PMID: 34507779 DOI: 10.1016/j.foodres.2021.110533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023]
Abstract
Although the microbial diversity and structure in bean-based fermented foods have been widely studied, systematic studies on functional microbiota and mechanism of community forms in multi-microbial fermentation systems were still lacking. In this work, the metabolic pathway and functional potential of microbial community in broad bean paste (BBP) were investigated by metagenomics approach, and Staphylococcus, Bacillus, Weissella, Aspergillus and Zygosaccharomyces were found to be the potential predominant populations responsible for substrate alteration and flavor biosynthesis. Among them, Staphylococcus was the most abundant and widespread functional microbe, and closely related Staphylococcus species were diverse and ubiquitously distributed, with the opportunistic pathogen S. gallinarum being the most abundant Staphylococcus specie isolated from BBP. To explain the dominance status of S. gallinarum and species distributions of Staphylococcus genus, we tested the effects of abiotic and biotic factors on three Staphylococcus species using a tractable BBP model, demonstrating that adaptation to environmental conditions (environmental parameters and other functional microbes) led to the dominant position and species coexistence of Staphylococcus, and congeneric competition among Staphylococcus species further shaped ecological distributions of closely related Staphylococcus species. In general, this work revealed the metabolic potential of microbial community and distribution mechanism of Staphylococcus species during BBP fermentation, which could help traditional factories to more precisely control the safety and quality of bean-based fermented foods.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng-Tuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei-Yun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chun-Feng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Jiangsu Modern Industrial Fermentation, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Zhao S, Niu C, Suo J, Zan Y, Wei Y, Zheng F, Liu C, Wang J, Li Q. Unraveling the mystery of ‘bask in daytime and dewed at night’ technique in doubanjiang (broad bean paste) fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Correlation between the quality and microbial community of natural-type and artificial-type Yongchuan Douchi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Yang Y, Niu C, Shan W, Zheng F, Liu C, Wang J, Li Q. Physicochemical, flavor and microbial dynamic changes during low-salt doubanjiang (broad bean paste) fermentation. Food Chem 2021; 351:128454. [PMID: 33652296 DOI: 10.1016/j.foodchem.2020.128454] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023]
Abstract
This study aimed to elaborate the roles of salt concentration on doubanjiang (broad bean paste) fermentation. Three sets of doubanjiang samples which had lower salt concentration than commercial doubanjiang were prepared and the physicochemical parameters, biogenic amines, flavor, microbial dynamics were analyzed during fermentation. The salt reduction showed significant effect on the dynamics of bacteria and fungi, thus leading to doubanjiang samples with different properties. Salt reduction during fermentation relieved the osmotic pressure towards microbes, which favored the accumulation of amino acid nitrogen, amino acids, and volatile flavor compounds. However, higher concentrations of total acids and biogenic amines and the existence of conditional pathogens, such as Klebsiella, Cronobacter and Acinetobacter genera, were observed in salt reduced doubanjiang samples, which was undesirable for doubanjiang quality. This study would deep our understanding of the roles of salt on doubanjiang fermentation.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wanxiang Shan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Lu Y, Tan X, Lv Y, Yang G, Chi Y, He Q. Physicochemical properties and microbial community dynamics during Chinese horse bean-chili-paste fermentation, revealed by culture-dependent and culture-independent approaches. Food Microbiol 2020; 85:103309. [PMID: 31500715 DOI: 10.1016/j.fm.2019.103309] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
The production of Chinese horse bean-chili-paste (CHCP) involves three fermentation phases: chili-to-moromi fermentation (CF) phase, horse bean-to-meju fermentation (HF) phase and moromi-meju mixed fermentation (MF) phase. To understand the microbial dynamics among these three phases and the potential roles of viable microbes for fermentation, microbial community dynamics was investigated by using culture-dependent and culture-independent methods. Furthermore, the capacities of enzyme-producing of the isolates were determined. During the CF phase, reducing sugar content increased from 3.1% to 3.49%, while pH declined from 4.85 to 4.5. The protein content in the HF phase and MF phase reduced sharply from 22.23% to 10.29% and 4.39%-1.19%, respectively. Bacillus sp., Staphylococcus sp., Oceanobacillus sp., Candida sp., Zygosaccharomyces sp. and Aspergillus sp. dominated the CF phase, while Bacillus sp., Candida sp. and Zygosaccharomyces sp. were the dominant microorganisms in both the HF and MF phases. B. amyloliquefaciens, B. methylotrophicus, B. subtilis, B. licheniformis and A. oryzae possessed strong capacities of producing enzymes, i.e. α-amylase, cellulase and xylanase, acid protease and leucine aminopeptidase, and could make a great contribution to CHCP fermentation.
Collapse
Affiliation(s)
- Yunhao Lu
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, PR China
| | - Xinyi Tan
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, PR China
| | - Yuanping Lv
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, PR China
| | - Guohua Yang
- Sichuan Dandan Pixian-douban Co., Ltd., Chengdu, 610065, PR China
| | - Yuanlong Chi
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, PR China.
| | - Qiang He
- College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
12
|
Lu Y, Yang L, Yang G, Chi Y, Sun Q, He Q. Insight into the Fermentation of Chinese Horse Bean-chili-paste. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Linzi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Guohua Yang
- Sichuan Dandan Pixian-douban Co.; Ltd., Chengdu, P. R. China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Qun Sun
- College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
13
|
Niu C, Min S, Jia Y, Zhao J, Yang Y, Liu C, Zheng F, Li Q. Adaptive evolution of Aspergillus oryzae 3.042 strain and process optimization to reduce the formation of tyrosine crystals in broad bean paste. J Food Biochem 2018; 43:e12716. [PMID: 31353653 DOI: 10.1111/jfbc.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/16/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
Tyrosine crystals occasionally appeared on the broad bean paste surface, which will cause economic losses. This study aimed to eliminate the tyrosine crystals in broad bean paste through decreasing the activities of proteolytic enzymes produced by Aspergillus oryzae and process optimization. Broad bean pastes containing no more than 6.16 mg/g dry material tyrosine showed low possibility to form tyrosine crystals. Using tyrosine as substrate, the A. oryzae 3.042 was adaptively evolved and the tyrosine content in the broad bean paste fermented by the evolved A. oryzae was reduced from 6.49 mg/g dry material to 6.14 mg/g dry material (p < 0.05). When the production process was optimized, the tyrosine content in broad bean paste was further reduced to 5.67 mg/g dry material (p < 0.05). In this condition, no tyrosine crystals were formed in broad bean paste after the 12-month storage while the product quality was not influenced. PRACTICAL APPLICATIONS: Tyrosine crystals were one of the most important factors which negatively influence the quality of traditionally fermented food, including broad bean paste, soybean paste, and sausages. The appearance of tyrosine crystals in these foods will cause economic losses to manufacturers. This study tried to eliminate the appearance of tyrosine crystals through decreasing the activities of proteolytic enzymes produced by Aspergillus oryzae 3.042 and fermentation process optimization. The adoption of modified A. oryzae and optimized fermentation process successfully guaranteed the elimination of tyrosine crystals formation in the production and storage period of broad bean paste. This will not only benefit the broad bean paste manufacturers but also provide guidance for other fermented food producers to deal with tyrosine crystals problem.
Collapse
Affiliation(s)
- Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shihao Min
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiadi Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yue Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Liu P, Xiang Q, Chen G, Liu Y, Zhai G, Lu S, Che Z. Consumer preference of Chinese traditional fermented fava pastes. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1528271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ping Liu
- College of Food and Bio-engineering, Xihua University, Chengdu, China
| | - Qin Xiang
- College of Food and Bio-engineering, Xihua University, Chengdu, China
| | - Gong Chen
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, Sichuan, China
| | - Yan Liu
- College of Food and Bio-engineering, Xihua University, Chengdu, China
| | - Gang Zhai
- Sichuan Provincial Economic and Information Commission, Chengdu, Sichuan, China
| | - Shixu Lu
- Institute of Food Research, Sichuan of Institute of Light Industry, Chengdu, Sichuan, China
| | - Zhenming Che
- College of Food and Bio-engineering, Xihua University, Chengdu, China
| |
Collapse
|
15
|
Biogenic amines analysis and microbial contribution in traditional fermented food of Douchi. Sci Rep 2018; 8:12567. [PMID: 30135497 PMCID: PMC6105706 DOI: 10.1038/s41598-018-30456-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Biogenic amines (BAs) have been reported to threaten the Douchi safety, while the BAs formation mechanism and corresponding control method have not been clarified for Douchi. The present study aims to investigate the microbial contribution to BAs in Douchi, and to find the beneficial strain for BAs control. Firstly, the BAs profiles of 15 Douchi samples were analyzed, and common 6 kinds of BAs were detected from different samples. All the samples showed the total BAs contents within the safe dosage range, while the histamine concentrations in 2 samples and β-phenethylamine in 6 samples were above the toxic level. Then, the bacterial and fungal communities were investigated by high-throughput sequencing analysis, and Bacillus and Candida were identified as the dominant bacteria and fungi genus, respectively. Furthermore, nineteen strains were selected from the dominant species of Douchi samples, including 14 Bacillus strains, 2 Staphylococcus strains, 1 Enterococcus strain and 2 Candida strains, and their BAs formation and degradation abilities were evaluated. B. subtilis HB-1 and S. pasteuri JX-2 showed no BAs producing ability, and B. subtilis GD-4 and Candida sp. JX-3 exhibited high BAs degradation ability. Finally, fermented soybean model analysis further verified that B. subtilis HB-1 and S. pasteuri JX-2 could significantly reduce BAs. This study not only contributed to understanding the BAs formation mechanism in Douchi, but also provided potential candidates to control the BAs in fermented soybean products.
Collapse
|