1
|
Ikhimiukor OO, Oaikhena AO, Afolayan AO, Fadeyi A, Kehinde A, Ogunleye VO, Aboderin AO, Oduyebo OO, Elikwu CJ, Odih EE, Komolafe I, Argimón S, Egwuenu A, Adebiyi I, Sadare OA, Okwor T, Kekre M, Underwood A, Ihekweazu C, Aanensen DM, Okeke IN. Genomic characterization of invasive typhoidal and non-typhoidal Salmonella in southwestern Nigeria. PLoS Negl Trop Dis 2022; 16:e0010716. [PMID: 36026470 PMCID: PMC9455843 DOI: 10.1371/journal.pntd.0010716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/08/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Salmonellosis causes significant morbidity and mortality in Africa. Information on lineages of invasive Salmonella circulating in Nigeria is sparse. METHODS Salmonella enterica isolated from blood (n = 60) and cerebrospinal fluid (CSF, n = 3) between 2016 and 2020 from five tertiary hospitals in southwest Nigeria were antimicrobial susceptibility-tested and Illumina-sequenced. Genomes were analysed using publicly-available bioinformatic tools. RESULTS Isolates and sequence types (STs) from blood were S. Typhi [ST1, n = 1 and ST2, n = 43] and invasive non-typhoidal Salmonella (iNTS) (S. Enteritidis [ST11, n = 7], S. Durham [ST10, n = 2], S. Rissen [ST8756, n = 2], S. Chester [ST2063, n = 1], S. Dublin [ST10, n = 1], S. Infantis [ST603, n = 1], S. Telelkebir [ST8757, n = 1] and S. Typhimurium [ST313, n = 1]). S. Typhi ST2 (n = 2) and S. Adabraka ST8757 (n = 1) were recovered from CSF. Most S. Typhi belonged to genotype 3.1.1 (n = 44), carried an IncY plasmid, had several antibiotic resistance genes (ARGs) including blaTEM-1 (n = 38), aph(6)-Id (n = 32), tet(A) (n = 33), sul2 (n = 32), dfrA14 (n = 30) as well as quinolone resistance-conferring gyrA_S83Y single-nucleotide polymorphisms (n = 37). All S. Enteritidis harboured aph(3")-Ib, blaTEM-1, catA1, dfrA7, sul1, sul2, tet(B) genes, and a single ARG, qnrB19, was detected in S. Telelkebir. Typhoidal toxins cdtB, pltA and pltB were detected in S. Typhi, Rissen, Chester, and Telelkebir. CONCLUSION Most invasive salmonelloses in southwest Nigeria are vaccine-preventable infections due to multidrug-resistant, West African dominant S. Typhi lineage 3.1.1. Invasive NTS serovars, including some harbouring typhoidal toxin or resistance genes, represented a third of the isolates emphasizing the need for better diagnosis and surveillance.
Collapse
Affiliation(s)
- Odion O. Ikhimiukor
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Anderson O. Oaikhena
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ayorinde O. Afolayan
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Fadeyi
- Department of Medical Microbiology and Parasitology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Aderemi Kehinde
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Veronica O. Ogunleye
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Aaron O. Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Oyinlola O. Oduyebo
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Charles J. Elikwu
- Department of Medical Microbiology, School of Basic Clinical Sciences, Benjamin Carson College of Health and Medical Sciences, Babcock University & Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - Erkison Ewomazino Odih
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ifeoluwa Komolafe
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | | | - Ini Adebiyi
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Oluwadamilola A. Sadare
- Department of Medical Microbiology, School of Basic Clinical Sciences, Benjamin Carson College of Health and Medical Sciences, Babcock University & Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - Tochi Okwor
- Nigeria Centre for Disease Control, Jabi, Abuja, Nigeria
| | - Mihir Kekre
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Iruka N. Okeke
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
2
|
Dos Santos AMP, Panzenhagen P, Ferrari RG, Rodrigues GL, Conte-Junior CA. The pESI megaplasmid conferring virulence and multiple-drug resistance is detected in a Salmonella Infantis genome from Brazil. INFECTION GENETICS AND EVOLUTION 2021; 95:104934. [PMID: 34029725 DOI: 10.1016/j.meegid.2021.104934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Anamaria M P Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Rafaela G Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Grazielle L Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
3
|
Rodrigues GL, Panzenhagen P, Ferrari RG, Dos Santos A, Paschoalin VMF, Conte-Junior CA. Frequency of Antimicrobial Resistance Genes in Salmonella From Brazil by in silico Whole-Genome Sequencing Analysis: An Overview of the Last Four Decades. Front Microbiol 2020; 11:1864. [PMID: 32849452 PMCID: PMC7426471 DOI: 10.3389/fmicb.2020.01864] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella is a leading human pathogen and a significant public health concern worldwide. Massive food production and distribution have contributed to this pathogen dissemination, which, combined with antimicrobial resistance (AMR), creates new control challenges in food safety. The development of AMR is a natural phenomenon and can occur in the bacterial evolutionary process. However, the overuse and the misuse of antimicrobial drugs in humans and in animals have increased AMR selective pressure. In Brazil, there is an accuracy lack in AMR frequency in Salmonella because too many isolates are under-investigated for genetic and phenotypic AMR by the Brazilian health authorities and the research community. This underreporting situation makes the comprehension of the real level of Salmonella AMR in the country difficult. The present study aimed to use bioinformatics tools for a rapid in silico screening of the genetic antimicrobial resistance profile of Salmonella through whole-genome sequences (WGS). A total of 930 whole-genome sequences of Salmonella were retrieved from the public database of the National Biotechnology Information Center (NCBI). A total of 65 distinct resistance genes were detected, and the most frequent ones were tet(A), sul2, and fosA7. Nine point mutations were detected in total, and parC at the 57 position (threonine → serine) was the highest frequent substitution (26.7%, 249/930), followed by gyrA at the 83 position (serine → phenylalanine) (20.0%, 186/930) and at the 87 position (aspartic acid → asparagine) (15.7%, 146/930). The in silico prediction of resistance phenotype showed that 58.0% (540/930) of the strains can display a multidrug resistance (MDR) profile. Ciprofloxacin and nalidixic acid were the antimicrobial drugs with the highest frequency rates of the predicted phenotype resistance among the strains. The temporal analysis through the last four decades showed increased frequency rates of antimicrobial resistance genes and predicted resistance phenotypes in the 2000s and the 2010s when compared with the 1980s and 1990s. The results presented herein contributed significantly to the understanding of the strategic use of WGS associated with in silico analysis and the predictions for the determination of AMR in Salmonella from Brazil.
Collapse
Affiliation(s)
- Grazielle Lima Rodrigues
- Nucleus of Food Analysis (NAL), Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Food Science Graduate Program (PPGCAL), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Panzenhagen
- Nucleus of Food Analysis (NAL), Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Food Science Graduate Program (PPGCAL), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela Gomes Ferrari
- Nucleus of Food Analysis (NAL), Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Food Science Graduate Program (PPGCAL), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anamaria Dos Santos
- Nucleus of Food Analysis (NAL), Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Food Science Graduate Program (PPGCAL), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vania Margaret Flosi Paschoalin
- Food Science Graduate Program (PPGCAL), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Nucleus of Food Analysis (NAL), Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Food Science Graduate Program (PPGCAL), Chemistry Institute, Department of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Health Surveillance Graduate Program (PPGVS), National Institute for Quality Control in Health (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
F. Rabello R, R. Bonelli R, A. Penna B, P. Albuquerque J, M. Souza R, M. F. Cerqueira A. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals (Basel) 2020; 10:E552. [PMID: 32224900 PMCID: PMC7222418 DOI: 10.3390/ani10040552] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
In animal husbandry, antimicrobial agents have been administered as supplements to increase production over the last 60 years. Large-scale animal production has increased the importance of antibiotic management because it may favor the evolution of antimicrobial resistance and select resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil is still preparing a national surveillance plan, several changes in legislation and timely programs have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with animals come from official programs and the scientific community. This review aims to update and discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of the resistance reported by studies published since 2009, focusing on farm animals and derived foods with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial agents. Data here presented may be useful to provide a better understanding of the Brazilian status on antimicrobial resistance related to farm animals and animal-derived food products.
Collapse
Affiliation(s)
- Renata F. Rabello
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Raquel R. Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno A. Penna
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Julia P. Albuquerque
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Rossiane M. Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói 24120-191, Brazil
| | - Aloysio M. F. Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| |
Collapse
|
5
|
Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals (Basel) 2020. [PMID: 32224900 DOI: 10.3390/ani1004055210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In animal husbandry, antimicrobial agents have been administered as supplements to increase production over the last 60 years. Large-scale animal production has increased the importance of antibiotic management because it may favor the evolution of antimicrobial resistance and select resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil is still preparing a national surveillance plan, several changes in legislation and timely programs have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with animals come from official programs and the scientific community. This review aims to update and discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of the resistance reported by studies published since 2009, focusing on farm animals and derived foods with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial agents. Data here presented may be useful to provide a better understanding of the Brazilian status on antimicrobial resistance related to farm animals and animal-derived food products.
Collapse
Affiliation(s)
- Renata F Rabello
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Raquel R Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno A Penna
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Julia P Albuquerque
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Rossiane M Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói 24120-191, Brazil
| | - Aloysio M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| |
Collapse
|
6
|
Castro VS, Vieira BS, Cunha-Neto A, Figueiredo EEDS, Conte-Junior CA. Acetic Acid Increased the Inactivation of Multi-drug Resistant Non-typhoidal Salmonella by Large-Scaffold Antibiotic. Indian J Microbiol 2019; 59:508-513. [PMID: 31762515 DOI: 10.1007/s12088-019-00837-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022] Open
Abstract
Salmonella is a gram-negative bacterium with intrinsic resistance to large-scaffold antibiotics due to the presence of an outer membrane. Based on the mode of action of the organic acids in outer membrane disintegration, and consequently, an enhancement in cell permeability, a combination of acetic acid and a large-scaffold antibiotic is it evaluated. Therefore, the aim of this study is to assess the combination of different levels of acetic acid with vancomycin, in order to determine whether or not the organic acid may overcome the cell wall and the intrinsic resistance in multi-drug resistant Salmonella. Screening of five wild-type Salmonella strains and one clinical strain was performed to select the strain more resistance to acid inhibition. Acetic acid was tested at 2.0, 1.75, 1.50, and 1.25% levels, separated or combined with 8 µg/mL vancomycin dose. An aliquot was collected after exposure and inoculated into the brain and heart infusion agar. The plates were counted and the data analyzed by ANOVA and a posthoc Tukey test (p < 0.05). The results indicate that 1.25 and 1.50% levels did not affect the vancomycin inactivation of multi-drug resistant Salmonella. However, at levels of 1.75 and 2.0%, an increase in microbial reduction is observed. Also, 2% level acetic acid and vancomycin had a threefold increase compared to vancomycin alone. Therefore, the use of acetic acid as prior treatment for Salmonella increased the inactivation rate of vancomycin. The combination of organic acid and antibiotics is a potential tool to overcome cases of antimicrobial resistance.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- 1Institute of Chemistry, Universidade Federal do Rio de Janeiro, Athos da Silveira Avenue, n. 149. Cidade Universitária, Rio de Janeiro, RJ 21941-909 Brazil.,2College of Agronomy and Animal Science, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil.,3College of Nutrition, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil.,4Department of Food Technology, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro, 24230-340 Brazil
| | - Bruno Serpa Vieira
- 2College of Agronomy and Animal Science, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil.,3College of Nutrition, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil
| | - Adelino Cunha-Neto
- 3College of Nutrition, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- 2College of Agronomy and Animal Science, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil.,3College of Nutrition, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900 Brazil
| | - Carlos Adam Conte-Junior
- 1Institute of Chemistry, Universidade Federal do Rio de Janeiro, Athos da Silveira Avenue, n. 149. Cidade Universitária, Rio de Janeiro, RJ 21941-909 Brazil.,4Department of Food Technology, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro, 24230-340 Brazil.,5National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900 Brazil
| |
Collapse
|
7
|
Longo A, Losasso C, Vitulano F, Mastrorilli E, Turchetto S, Petrin S, Mantovani C, Dalla Pozza MC, Ramon E, Conedera G, Citterio CV, Ricci A, Barco L, Lettini AA. Insight into an outbreak of Salmonella Choleraesuis var. Kunzendorf in wild boars. Vet Microbiol 2019; 238:108423. [PMID: 31648730 DOI: 10.1016/j.vetmic.2019.108423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 10/26/2022]
Abstract
An unusual mortality of wild boars occurred in Italy from 2012 to 2015 due to Salmonella Choleraesuis infection. In order to confirm the occurrence of an outbreak of S. Choleraesuis in wild boars and to epidemically characterise the unique S. Choleraesuis biovar, a collection of isolates belonging to wild boars was investigated from the phenotypic, molecular and genomic points of view (PFGE and WGS). Moreover, the possibility of transmission to domestic pigs and humans, temporally and geographically close to the wild boar epidemic, was tested by also including in the panel isolates from infected domestic pigs and from one human case of infection. Wild boar isolates displayed a high genetic correlation, thus suggesting they are part of the same outbreak, with a common invasiveness potential. Conversely, no correlation between pig isolates and those from the other sources (wild boars and human) was found. However, the phylogenetic and PFGE analyses suggest a high degree of similarity between the human and the investigated wild boar outbreak isolates, implying the potential for the spread of Salmonella Choleraesuis among these species.
Collapse
Affiliation(s)
- Alessandra Longo
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Carmen Losasso
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy.
| | - Federica Vitulano
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Eleonora Mastrorilli
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Sara Turchetto
- SCT2 - Treviso, Belluno and Venezia - O.U. Eco-pathology, Istituto Zooprofilattico Sperimentale delle Venezie, Belluno, Italy
| | - Sara Petrin
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Claudio Mantovani
- Science Communication Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Maria Cristina Dalla Pozza
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Elena Ramon
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Gabriella Conedera
- SCT4 - Friuli Venezia Giulia - Istituto Zooprofilattico Sperimentale delle Venezie, Pordenone, Italy
| | - Carlo V Citterio
- SCT2 - Treviso, Belluno and Venezia - O.U. Eco-pathology, Istituto Zooprofilattico Sperimentale delle Venezie, Belluno, Italy
| | - Antonia Ricci
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Lisa Barco
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Antonia Anna Lettini
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| |
Collapse
|
8
|
Mutz YDS, Rosario DKA, Paschoalin VMF, Conte-Junior CA. Salmonella enterica: A hidden risk for dry-cured meat consumption? Crit Rev Food Sci Nutr 2019; 60:976-990. [DOI: 10.1080/10408398.2018.1555132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yhan da Silva Mutz
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | - Denes Kaic Alves Rosario
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Canto ACVDCS, Monteiro MLG, Costa‐Lima BRCD, Lázaro CA, Marsico ET, Silva TJPD, Conte‐Junior CA. Effect of UV‐C radiation onSalmonellaspp. reduction and oxidative stability of caiman (Caiman crocodilus yacare) meat. J Food Saf 2018. [DOI: 10.1111/jfs.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Maria Lucia Guerra Monteiro
- Department of Food TechnologyUniversidade Federal Fluminense Rio de Janeiro Brazil
- Chemistry Institute, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Cesar Aquiles Lázaro
- Facultad de Medicina VeterinariaUniversidad Nacional Mayor de San Marcos Lima Peru
| | | | | | - Carlos Adam Conte‐Junior
- Department of Food TechnologyUniversidade Federal Fluminense Rio de Janeiro Brazil
- Chemistry Institute, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz Rio de Janeiro Brazil
| |
Collapse
|
10
|
Oniciuc EA, Likotrafiti E, Alvarez-Molina A, Prieto M, Santos JA, Alvarez-Ordóñez A. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes (Basel) 2018; 9:E268. [PMID: 29789467 PMCID: PMC5977208 DOI: 10.3390/genes9050268] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance (AMR) surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS) of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS) technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes.
Collapse
Affiliation(s)
- Elena A Oniciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati 800008, Romania.
| | - Eleni Likotrafiti
- Laboratory of Food Microbiology, Department of Food Technology, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki T.K. 57400, Greece.
| | - Adrián Alvarez-Molina
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Miguel Prieto
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| |
Collapse
|