1
|
Priya K, Rathinasabapathi P, Arunraj R, Sugapriya D, Ramya M. Development of multiplex HRM-based loop-mediated isothermal amplification method for specific and sensitive detection of Treponema pallidum. Arch Microbiol 2022; 204:355. [PMID: 35648234 DOI: 10.1007/s00203-022-02973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Syphilis is a sexually transmitted disease caused by the spirochaete bacterium Treponema pallidum. This study has developed a multiplex High-Resolution Melt-curve Loop-mediated isothermal amplification (multiplex HRM-LAMP) assay targeting the marker genes polA and tprL to detect T. pallidum. The multiplex HRM-LAMP assay conditions were optimized at 65 °C for 45 min. Real-time melt-curve analysis of multiplex HRM-LAMP shows two melt-curve peaks corresponding to polA and tprL with a Tm value of 80 ± 0.5 °C and 87 ± 0.5 °C, respectively. The detection limit of multiplex HRM-LAMP was found to be 6.4 × 10-4 ng/μL (3.79 copies/μL) of T. pallidum. The specificity was evaluated using seven different bacterial species, and the developed method was 100% specific in detecting T. pallidum. A total of 64 blood samples of T. pallidum suspected cases were used to validate the assay method. The clinical validation showed that the assay was 96.43% sensitive and 100% specific in detecting syphilis. Thus, the developed method was more rapid and sensitive than other available methods and provides a multigene-based diagnostic approach to detect T. pallidum.
Collapse
Affiliation(s)
- Krishnamoorthy Priya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India
| | - Pasupathi Rathinasabapathi
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India
| | - Rex Arunraj
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India
| | - Dhanasekaran Sugapriya
- Department of Medical Laboratory (Pathology), College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Wadi-Al Dawaser, 11451, Riyadh, Saudi Arabia
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Molecular Diagnostic Methods For The Detection of Leptospirosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a widespread infectious disease caused by the spirochete Leptospira. The clinical features of leptospirosis are fever, headache, vomiting, jaundice, and the acute form of the disease is commonly called Weil’s disease. The microscopic agglutination test (MAT) is a gold standard method used to detect leptospirosis. However, it requires 14 days of time and skilled personnel to detect leptospirosis. Various molecular methods were developed for the rapid detection process, including polymerase chain reaction (PCR), multiplex PCR, nested PCR, real-time PCR, and Loop-mediated isothermal amplification (LAMP). Other immuno-based biosensor kits are readily available for the diagnosis of leptospirosis. Though these methods claim to be highly sensitive and specific, each method has its drawbacks. This review discusses the different molecular diagnostic techniques applied for the diagnosis of leptospirosis; elaborating on each method’s sensitivity, specificity, and detection time and the different samples of water, blood, and urine used.
Collapse
|
3
|
Chirathaworn C, Janwitthayanan W, Suputtamongkol Y, Poovorawan Y. Leptospira collagenase and LipL32 for antibody detection in leptospirosis. J Immunol Methods 2021; 499:113168. [PMID: 34673004 DOI: 10.1016/j.jim.2021.113168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Various Leptospira components have been identified as candidate antigens for the detection of antibody to Leptospira. LipL32 is a Leptospira membrane protein which has been widely studied. The report of Leptospira whole-genome sequencing demonstrated that pathogenic Leptospira contained the nucleotide sequence (colA gene) coding for the collagenase. Expression of ColA protein and its enzymatic activity was demonstrated. In this study, cloned ColA protein, in comparison with LipL32, was used as an antigen for antibody detection. Thirty pairs of sera from human leptospirosis patients were tested. Sera from blood donors, and patients with scrub typhus and dengue virus infection (20 samples from each group) were tested for the specificity. All sera from leptospirosis patients tested in this study reacted with both ColA and LipL32 proteins. Sera from blood donors, patients with scrub typhus and dengue virus infection did not react with ColA protein. Data suggested that sensitivity and specificity of ColA protein for Leptospira antibody detection were 100%. In addition, ColA protein showed higher specificity than LipL32. Our data suggested that ColA protein could be another candidate antigen for antibody detection in leptospirosis diagnosis.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Weena Janwitthayanan
- Master of Science Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Di Azevedo MIN, Lilenbaum W. An overview on the molecular diagnosis of animal leptospirosis. Lett Appl Microbiol 2021; 72:496-508. [PMID: 33332656 DOI: 10.1111/lam.13442] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
The most common presentation of animal leptospirosis is the subclinical and silent chronic form, that can lead to important reproductive disorders. The diagnosis of this chronic form remains a challenge. The aim of the present study is to gather and critically analyse the current information about molecular tools applied to animal leptospirosis diagnosis, particularly the silent chronic presentation of the infection. Regarding clinical specimens, samples from urinary tract were the most used (69/102, 67·7%), while few studies (12/102, 11·8%) investigated samples from reproductive tract. Concerning the molecular methods applied, the most used is still the conventional polymerase chain reaction (PCR) (46/102, 45%), followed by real-time PCR (38/102, 37·2%). The lipL32 gene is currently the most common target used for Leptospira detection, with 48% of studies applying this genetic marker. From all the studies, only few (21/102, 20·5%) performed gene sequencing. According to the majority of authors, current evidence suggests that lipL32-PCR is useful for an initial screening for Leptospira DNA detection in animal clinical samples. Posteriorly, if DNA sequencing could be performed on positive lipL32-PCR samples, we encourage the use of secY gene as a genetic marker. The molecular methods appear as the most important tools for the diagnosis of the chronic silent leptospirosis on domestic animals, reinforcing its evident impact not only on animal reproduction but also on a One Health context.
Collapse
Affiliation(s)
- M I N Di Azevedo
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - W Lilenbaum
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Gunasegar S, Neela VK. Evaluation of diagnostic accuracy of loop-mediated isothermal amplification method (LAMP) compared with polymerase chain reaction (PCR) for Leptospira spp. in clinical samples: a systematic review and meta-analysis. Diagn Microbiol Infect Dis 2021; 100:115369. [PMID: 33845305 DOI: 10.1016/j.diagmicrobio.2021.115369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) test is widely used in molecular diagnostics as a point-of-care technique alternative to traditional PCR especially in resource-limited countries. LAMP has been recently used to diagnose leptospirosis. Therefore, we undertook a systematic review and meta-analysis to compare the accuracy of LAMP with PCR in the diagnosis of leptospirosis. Sixty-one studies were extracted from three international databases and analyzed throughout using the PRISMA guideline. The pooled sensitivity of LAMP and PCR technique was 0.80 (95% CI: 0.58-0.90) and 0.54 (95% CI: 0.35-0.67) respectively indicating that LAMP is more sensitive than PCR. The Q* value of LAMP and PCR-based technique is 274.61 and 397.95, respectively. Among the analyzed studies, significant heterogeneity was observed where I2 is 90.90% for LAMP-based and 86.18% for PCR-based. Our study suggests that LAMP has better diagnostic accuracy than PCR. However, future work should be carried out to reduce heterogeneity as well as to improve and develop effective intervention strategies.
Collapse
Affiliation(s)
- Shan Gunasegar
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Development of a Multiplex PCR Assay for Detection and Discrimination of Pathogenic and Saprophytic Leptospira in Water. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a zoonosis prevalent in tropical countries and affects animals and humans alike. Leptospira interrogans, the causative organism for this waterborne infection, spreads through the urine of infected animals. There is a direct link between contaminated water and Leptospira outbreaks. This study reports a rapid assay to detect and differentiate pathogenic Leptospira from non-pathogenic in environmental water using multiplex PCR. The assay uses primers targeting the Lipl32 and Lipl21 gene. The multiplex PCR has been standardized using 11 pathogenic and one saprophytic serovar of Leptospira. The analytical sensitivity of the developed method was evaluated with different concentrations of template DNA. This method was used to screen water samples collected from 20 different sources from Chengalpattu town in Kancheepuram District, Tamil Nadu, India. Of the 20 water samples screened, 13 samples tested positive for pathogenic Leptospira, and seven samples tested negative. Four water samples were found to carry both pathogenic and saprophytic species. The developed multiplex PCR assay is highly useful for detecting and distinguishing pathogenic and saprophytic leptospires in water.
Collapse
|
7
|
Varsha V, Aishwarya S, Murchana S, Naveen G, Ramya M, Rathinasabapathi P. Correction pen based paper fluidic device for the detection of multiple gene targets of Leptospira using Loop Mediated Isothermal Amplification. J Microbiol Methods 2020; 174:105962. [PMID: 32473300 DOI: 10.1016/j.mimet.2020.105962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
Paper-based nucleic acid testing techniques are increasingly in demand. Hence, we have developed a simple and cheap paper fluidic device to detect multiple gene targets in Leptospira. Fluidic channels of the penta-clover device are drawn using a correction pen on Whatman filter paper 1. The fluid blocks the pores of the paper, avoiding leakage and ensuring the equal flow of sample to the reaction pads. The target genes are amplified by performing Loop-Mediated Isothermal Amplification (LAMP) with dry reaction components. Thecolor change of leuco crystal violetallows real-time monitoring of a positive amplification. The difference in color intensity is captured with a smartphone and analyzed using image processing software. The device amplifies the target within 15 min, detects the pathogen at a concentration as low as 50 attogram μL-1, detects Leptospira in blood samples without prior treatment and differentiates the Leptospira species even after 21 days of storage at room temperature.
Collapse
Affiliation(s)
- Venkatesh Varsha
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (District), Tamil Nadu, India
| | - Sitaraman Aishwarya
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (District), Tamil Nadu, India
| | - Sarma Murchana
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (District), Tamil Nadu, India
| | - Gattuboyena Naveen
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (District), Tamil Nadu, India
| | - Mohandass Ramya
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (District), Tamil Nadu, India
| | - Pasupathi Rathinasabapathi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (District), Tamil Nadu, India.
| |
Collapse
|
8
|
Dhayabaran V, Chidambaram D, Krishnaswamy PR. Identification of compounds for improved growth of Leptospira in culture and isolation. Diagn Microbiol Infect Dis 2020; 96:114923. [DOI: 10.1016/j.diagmicrobio.2019.114923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 02/02/2023]
|
9
|
Zhao J, Xu W, Tu G, Zhou Y, Wu X. Sensitive and rapid detection of Ortleppascaris sinensis (Nematoda: Ascaridoidea) by loop-mediated isothermal amplification. PeerJ 2019; 7:e7607. [PMID: 31534850 PMCID: PMC6733237 DOI: 10.7717/peerj.7607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Ortleppascaris sinensis is the dominant nematode species infecting the gastrointestinal tract of the captive Chinese alligator, a critically endangered species. Gastrointestinal nematode infection may cause a loss of appetite, growth, a development disorder, and even mortality in alligators, especially young ones. This research first establishment a loop-mediated isothermal amplification (LAMP) assay in rapidly identifying O. sinensis, upon the basis of the complete internal transcribed spacers (ITS) gene. Eight sets of primers were designed for recognition of the unique conserved ITS gene sequences, and one set was selected to be the most suitable primer for rapid detection. The specific as well as the sensitive features of the most appropriate primer in LAMP reactions for O. sinensis, and feces specimens of Chinese alligators suffering from O. sinensis were determined. Turbidity monitoring and Te Visual Reagent methods were used for determining negative and positive consequences. According to this study, amplification and visualization of the target DNA could be realized through two detection approaches during 50 min at 65 °C isothermal temperature. The sensitivity of LAMP was a detecting limitation of 3.46 pg/µl DNA. No cross-reactions were found between O. sinensis and any other of the nine heterologous nematode parasites, which shows the outstanding specific features of the primers. The LAMP assay could also perform a detection of target DNA of O. sinensis in the feces samples of Chinese alligators. This LAMP assay is useful for directly detecting O. sinensis in the Chinese alligator breeding centers, particularly due to its rapidity, simplicity and low cost.
Collapse
Affiliation(s)
- Jinhong Zhao
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China.,Provincial Laboratory of Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wei Xu
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China
| | - Genjun Tu
- The National Nature Reserve of Chinese Alligator in Anhui, Xuanzhou, Anhui, China
| | - Yongkang Zhou
- The National Nature Reserve of Chinese Alligator in Anhui, Xuanzhou, Anhui, China
| | - Xiaobing Wu
- Provincial Laboratory of Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|