1
|
Manzoor S, Nabi SU, Baranwal VK, Verma MK, Parveen S, Rather TR, Raja WH, Shafi M. Overview on century progress in research on mosaic disease of apple (Malus domestica Borkh) incited by apple mosaic virus/apple necrotic mosaic virus. Virology 2023; 587:109846. [PMID: 37586234 DOI: 10.1016/j.virol.2023.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Apple mosaic is widely distributed disease throughout the apple growing regions leading to the major adverse effects both qualitatively and quantitatively. Earlier the apple mosaic virus-ApMV was regarded as the only causal agent of the disease, but recently a novel virus apple necrotic mosaic virus-ApNMV have been reported as the causal pathogen from various apple growing countries. Accurate diagnosis of disease and detection of ApMV and ApNMV are of utmost importance, because without this ability we can neither understand nor control this disease. Both the viruses are mostly controlled through quarantine, isolation, sanitation and certification programs depending on sensitive and specific detection methods available. Here we review the 100-year progress in research on apple mosaic disease, which includes history, yield losses, causal agents, their genome organization, replication, traditional to recent detection methods, transmission, distribution and host range of associated viruses and management of the disease.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India.
| | | | - Mahendra K Verma
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Shugufta Parveen
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Tariq Rasool Rather
- Division of Plant Pathology, FOH-SKUAST-K, Shalimar, Srinagar, 190025, India
| | - Wasim H Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132, India
| | - Mansoor Shafi
- Department of Plant Resources and Environment, Jeju National University, Jeju-si, 63243, Republic of Korea
| |
Collapse
|
2
|
Nabi SU, Mir JI, Yasmin S, Din A, Raja WH, Madhu GS, Parveen S, Mansoor S, Chung YS, Sharma OC, Sheikh MA, Al-Misned FA, El-Serehy HA. Tissue and Time Optimization for Real-Time Detection of Apple Mosaic Virus and Apple Necrotic Mosaic Virus Associated with Mosaic Disease of Apple ( Malus domestica). Viruses 2023; 15:v15030795. [PMID: 36992503 PMCID: PMC10059951 DOI: 10.3390/v15030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material.
Collapse
Affiliation(s)
- Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Javid Iqbal Mir
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Salwee Yasmin
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Ambreena Din
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Wasim H Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - G S Madhu
- ICAR-Indian Institute of Horticultural Research, RS-Chettalli, Bangaluru 571248, Karnataka, India
| | - Shugufta Parveen
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Om Chand Sharma
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Muneer Ahmad Sheikh
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Xu L, Ming J. Development of a multiplex RT-PCR assay for simultaneous detection of Lily symptomless virus, Lily mottle virus, Cucumber mosaic virus, and Plantago asiatica mosaic virus in Lilies. Virol J 2022; 19:219. [PMID: 36527114 PMCID: PMC9758769 DOI: 10.1186/s12985-022-01947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Viral pathogens causing significant economic losses in lilies (Lilium spp. and hybrids) include Lily symptomless virus (LSV), Lily mottle virus (LMoV), Cucumber mosaic virus (CMV), and Plantago asiatica mosaic virus (PlAMV). Rapid and efficient virus detection methods are pivotal to prevent the spread of these viruses. RESULTS In this study, four specific primer pairs designed from conserved regions of genomic sequences of each virus were used to amplify a 116 bp product for LSV, a 247 bp product for LMoV, a 359 bp product for CMV, and a 525 bp product for PlAMV in a multiplex reverse transcription-polymerase chain reaction (multiplex RT-PCR). The amplified products were clearly separated by 2% agarose gel electrophoresis. The optimal reaction annealing temperature and cycle number were 53.8 °C and 35, respectively. The developed multiplex RT-PCR method was then used to test virus infections from lily samples collected from different regions of China. CONCLUSIONS An effective multiplex RT-PCR assay was established for the simultaneous detection and differentiation of LSV, LMoV, CMV, and PlAMV in lilies, which offers a useful tool for routine molecular diagnosis and epidemiological studies of these viruses.
Collapse
Affiliation(s)
- Leifeng Xu
- grid.410727.70000 0001 0526 1937Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Ming
- grid.410727.70000 0001 0526 1937Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
4
|
Kim SW, Lee HJ, Cho KH, Jeong RD. Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR. THE PLANT PATHOLOGY JOURNAL 2022; 38:417-422. [PMID: 35953062 PMCID: PMC9372104 DOI: 10.5423/ppj.nt.05.2022.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Apple stem grooving virus (ASGV) is a destructive viral pathogen of pome fruit trees that causes significant losses to fruit production worldwide. Obtaining ASGV-free propagation materials is essential to reduce economic losses, and accurate and sensitive detection methods to screen ASGV-free plantlets during in vitro propagation are urgently necessary. In this study, ASGV was sensitively and accurately quantified from in vitro propagated apple plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The optimized RT-ddPCR assay was specific to other apple viruses, and was at least 10-times more sensitive than RT-real-time quantitative PCR assay. Furthermore, the optimized RT-ddPCR assay was validated for the detection and quantification of ASGV using micropropagated apple plantlet samples. This RT-ddPCR assay can be utilized for the accurate quantitative detection of ASGV infection in ASGV-free certification programs, and can thus contribute to the production of ASGV-free apple trees.
Collapse
Affiliation(s)
- Sung-Woong Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185,
Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185,
Korea
| | - Kang Hee Cho
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Rae-Dong Jeong
- Corresponding author: Phone) +82-62-530-2075, FAX) +82-62-530-2069, E-mail)
| |
Collapse
|
5
|
Nabi A, Lateef I, Nisa Q, Banoo A, Rasool RS, Shah MD, Ahmad M, Padder BA. Phaseolus vulgaris-Colletotrichum lindemuthianum Pathosystem in the Post-Genomic Era: An Update. Curr Microbiol 2022; 79:36. [PMID: 34982236 DOI: 10.1007/s00284-021-02711-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Phaseolus vulgaris-Colletotrichum lindemuthianum is one among the oldest host and pathogen interface. Researchers have taken painstaking efforts across the world for understanding the dialogue during early and late phases of interaction. Collectively, these efforts resulted in the deluge of information that helped the researchers to underpin the interface. The latest molecular biology techniques furnished novel detection methods for the anthracnose pathogen, refined the understanding of pathogen population dynamics, and provided the insights on co-evolutionary common bean resistance and C. lindemuthianum virulence dynamics. One of the important breakthroughs came when the Phaseolus vulgaris and its corresponding anthracnose pathogen (C. lindemuthianum) genomes were decoded in 2014 and 2017, respectively. Availability of both the genomes yielded a significant genomic information that helped bean communities to fine map the economically important traits and to identify the pathogenicity determinants and effector molecules. The interface is in a continuous development as knowledge of the anthracnose resistance genes, their precise physical locations, and the identification of effector proteins; the fungus arsenals are being routinely updated. Hence, we revisited the interface and tried to provide an overview of host pathogen dialogue in the genomic era. Additionally, we compiled the sporadic information on this pathosystem from India and provided its futuristic road map to shape its research in the world and northern India, the major dry bean area in the country.
Collapse
Affiliation(s)
- Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rovidha S Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Mushtaq Ahmad
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|