1
|
Wang H, Zhang Y, Yu D, Li Y, Ding Y, He Y, Sun L. A review of the research progress on Artemisia argyi Folium: botany, phytochemistry, pharmacological activities, and clinical application. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7473-7500. [PMID: 38775853 DOI: 10.1007/s00210-024-03122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 10/04/2024]
Abstract
As a kind of well-known moxibustion material across the world, Artemisia argyi Folium (AAF) has a definite curative effect. From 1996 to now, various studies on AAF have been increasing year by year. That is why this paper is conducted because of no comprehensive summary except for an essential oil review recently published in 2023. Using "AAF" and "mugwort" as keywords, the related literature was summarized in four internationally recognized databases: PubMed, Web of Science, ACS, and ScienceDirect, mainly include four aspects such as botany, phytochemistry, pharmacology, and clinical application. Four traditional identification methods and two new ones were reported. A total of 136 compounds were identified, among which 23 new terpenoids and two new flavonoids were discovered. The pharmacological effects of AAF mainly focus on anti-inflammatory, anti-tumor, antioxidant, antibacterial, and other aspects. Clinically, it is mainly used in respiratory, immune, digestive, and nervous systems in addition to gynecology. The current research mainly focuses on the composition and pharmacology of AAF. Future studies should thoroughly establish the quality criteria and pharmacokinetics of AAF. According to the different application fields, the corresponding quality standards should be formulated to ensure the efficacy of drugs in the actual treatment.
Collapse
Affiliation(s)
- Hailong Wang
- Liao Yuan Vocational Technical College, Liao Yuan, 136200, China
| | - Yiwen Zhang
- College of Health Management, Changchun University of Chinese Medicine, Chang Chun, 130117, Jilin, China
| | - Denghui Yu
- College of Health Management, Changchun University of Chinese Medicine, Chang Chun, 130117, Jilin, China
| | - Yong Li
- College of Health Management, Changchun University of Chinese Medicine, Chang Chun, 130117, Jilin, China
| | - Yuling Ding
- College of Health Management, Changchun University of Chinese Medicine, Chang Chun, 130117, Jilin, China
| | - Yuan He
- College of Health Management, Changchun University of Chinese Medicine, Chang Chun, 130117, Jilin, China
| | - Li Sun
- College of Health Management, Changchun University of Chinese Medicine, Chang Chun, 130117, Jilin, China.
| |
Collapse
|
2
|
Ding W, Shao X, Ding S, Du Y, Hong W, Yang Q, Song Y, Yang G. Natural herb wormwood-based microneedle array for wound healing. Drug Deliv Transl Res 2024; 14:2461-2473. [PMID: 38296909 DOI: 10.1007/s13346-024-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Artemisia argyi, commonly known as wormwood, is a traditional Chinese herbal food and medicine celebrated for its notable antibacterial and anti-inflammatory properties. This study explores a novel delivery method for wormwood, aiming for more convenient and versatile applications. Specifically, we present the first investigation into combining wormwood with microstructures to create a microneedle (MN) patch for wound healing. The wormwood microneedle (WMN) patch is formulated with milled wormwood sap, calcium carbonate, and sodium hyaluronate. The addition of 0.3% (w/v) sodium hyaluronate enhances the mechanical strength of the WMN patch. Pectin, derived from wormwood, is combined with calcium carbonate to create a gelatinous and solidified substance. The WMN patch exhibits a well-defined shape and sufficient mechanical strength to penetrate the epidermis, as confirmed by our results. In vitro experiments demonstrate the biocompatibility of the WMN patch with fibroblasts and highlight its antibacterial and anti-inflammatory properties. Furthermore, the patch facilitates collagen deposition at the wound site. In an excisional rat model, the WMN patch significantly accelerates the wound closure rate compared to the control group. Our findings suggest that the WMN patch has the potential to serve as a natural treatment for wound healing. Additionally, this approach can be extended to other biologically active substances with similar physiochemical characteristics in future applications.
Collapse
Affiliation(s)
- Wenqin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China
| | - Xingyu Shao
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China
| | - Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China
| | - Weiyong Hong
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Song
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, #18 Chaowang Road, Hangzhou, 310014, China.
- Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Zhang B, Lan W, Yan P, Xie J. The antibacterial and inhibition effect of chitosan grafted gentisate acid derivatives against Pseudomonas fluorescens: Attacking multiple targets on structure, metabolism system, antioxidant system, and biofilm. Int J Biol Macromol 2024; 273:133225. [PMID: 38897501 DOI: 10.1016/j.ijbiomac.2024.133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
This work aimed to investigate the antibacterial ability and potential mechanism of chitosan grafted gentisate acid derivatives (CS-g-GA) against Pseudomonas fluorescens. The results showed that CS-g-GA had a significant suppressive impact on the growth of Pseudomonas fluorescens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.64 mg/mL and 1.28 mg/mL, respectively. Results of scanning electron microscopy (SEM) and alkaline phosphatase (AKPase) confirmed that CS-g-GA destroyed the cell structure thereby causing the leakage of intracellular components. In addition, 1 × MIC of CS-g-GA could significantly inhibit the formation of biofilms, and 74.78 % mature biofilm and 86.21 % extracellular polysaccharide of Pseudomonas fluorescens were eradicated by CS-g-GA at 2 × MIC. The results on the respiratory energy metabolism system and antioxidant system demonstrated that CS-g-GA caused respiratory disturbance and energy limitation by influencing the key enzyme activities. It could also bind to DNA and affect genetic metabolism. From this, it could be seen that CS-g-GA had the potential to control foodborne contamination of Pseudomonas fluorescens by attacking multiple targets.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Peiling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
4
|
Wang Q, Zhou X, Gou H, Chang H, Lan J, Li J, Li Z, Gao M, Wang Z, Yi Y, Li N. Antibacterial activity of a polysaccharide isolated from Artemisia argyi leaf against Staphylococcus aureus and mechanism investigation. Int J Biol Macromol 2023; 253:126636. [PMID: 37657565 DOI: 10.1016/j.ijbiomac.2023.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Abuse of antibiotics has led to excessive amounts of antibiotic residues in food and environment, thus enhancing pathogenic bacterium resistance and threatening human health. Therefore, searching and developing safe and green antibiotic alternatives are necessary. In this study, an Artemisia argyi leaf polysaccharide (AALP) fraction was extracted and analyzed. Chemical composition analysis showed that the carbohydrate, uronic acid, protein, and polyphenol content in AALP were 68.3 % ± 4.13 %, 9.4 % ± 0.86 %, 1.79 % ± 0.27 %, and 0.16 % ± 0.035 %, respectively. Chromatographic results suggested that AALP contained rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar ratio of 9.26, 1.35, 1.18, 3.04, 48.51, 2.33, 31.26, 3.93, and 9.08; the weight average molecular weight, number average molecular weight, and polydispersity of AALP were 5.41 kDa, 4.63 kDa, and 1.168, respectively. Fourier transform infrared spectroscopy indicated that AALP constituted the polysaccharide-specific groups of CH, CO, and OH. Meanwhile, AALP showed a dose-dependent inhibitory effect on Staphylococcus aureus in the inhibition zone assay, and the minimal inhibitory concentration was 1.25 mg/mL. Furthermore, AALP disrupted the cell wall, depolarized the inner membrane potential, and inhibited the activities of succinate dehydrogenase and malate dehydrogenase in S. aureus.
Collapse
Affiliation(s)
- Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haiqin Gou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - He Chang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junyi Lan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Li
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Umam K, Feng CS, Yang G, Tu PC, Lin CY, Yang MT, Kuo TF, Yang WC, Tran Nguyen Minh H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel) 2023; 10:633. [PMID: 37370564 DOI: 10.3390/bioengineering10060633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.
Collapse
Affiliation(s)
- Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Faculty of Life Science and Technology, Biotechnology Department, Sumbawa University of Technology, Sumbawa Besar 84371, NTB, Indonesia
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping-Chen Tu
- Sun Ten Pharmaceutical Co., Ltd., New Taipei City 23143, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ting Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | | |
Collapse
|
6
|
Wu X, Ma GL, Chen HW, Zhao ZY, Zhu ZP, Xiong J, Yang GX, Hu JF. Antibacterial and antibiofilm efficacy of the preferred fractions and compounds from Euphorbia humifusa (herba euphorbiae humifusae) against Staphylococcus aureus. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116177. [PMID: 36681167 DOI: 10.1016/j.jep.2023.116177] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia humifusa Willd., known as Di-Jin-Cao in Chinese, has long been utilized as a traditional herb for the treatment of furuncles and carbuncles mainly caused by Staphylococcus aureus infection. Despite extensive chemical and pharmacological studies reported previously for E. humifusa, the antibacterial and antibiofilm activities against S. aureus as well as the related mechanism of action (MoA) remain largely obscure. AIM OF THE STUDY To investigate the antibacterial and antibiofilm activities of the preferred fractions and compounds from E. humifusa against S. aureus and assess the associated MoA. MATERIALS AND METHODS The bioactive fractions and compounds were obtained from the 75% ethanol extract of E. humifusa (75%-EEEH) with the assistance of the related antibacterial and antibiofilm screening. Their antibacterial activities were determined using the broth microdilution method, whilst the inhibition of biofilm formation and the disruption of preformed biofilm were assessed by crystal violet staining and confocal laser scanning microscopy (CLSM). To achieve more effective therapies, the combinatory effects of different components were also studied. The biofilm metabolic activities of isolated compounds were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. The scanning electron microscopy (SEM) and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to explore the antibiofilm mechanism. RESULTS Fractions DJC06 and DJC07 collected from the ethyl acetate extract of the 75%-EEEH exhibited antibacterial activity (MIC = 256 μg/mL) against S. aureus and further separation of these two fractions led to the isolation and characterization of 22 compounds. Among the isolates, luteolin (LU), quercetin (QU), and kaempferol (KA) are the verified components associated with the antibacterial and antibiofilm activities by displaying individual or combinational MIC values of 8-128 μg/mL and 70.9-99.7% inhibition for biofilm formation. Importantly, QU and KA can work in synergy with LU to significantly enhance the efficacy via destroying cell integrity, increasing membrane permeability, and down-regulating the biofilm-related gene expression. CONCLUSIONS The preferred fractions and compounds from E. humifusa exerted desired antibacterial and antibiofilm efficacy against S. aureus via a MoA involving cell morphology disruption and altered genes expression. The findings herein not only support its traditional use in the treatment of furuncles and carbuncles, but reveal E. humifusa is a potential source for producing promising antibiofilm alternatives against S. aureus and highlight the isolated components (LU, QU, KA) that can potentiate the efficacy when used in synergy.
Collapse
Affiliation(s)
- Xiying Wu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Guang-Lei Ma
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hao-Wei Chen
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ze-Yu Zhao
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zi-Ping Zhu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
7
|
Gou J, Lu Y, Xie M, Tang X, Chen L, Zhao J, Li G, Wang H. Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria. Heliyon 2023; 9:e14985. [PMID: 37151707 PMCID: PMC10161380 DOI: 10.1016/j.heliyon.2023.e14985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Asteraceae family are widely used as ethno medicines to treatment parasitic, malaria, hematemesis, pruritus, pyretic, anthelmintic, wound healing. The aim of this review is to provide an overview of Asteraceae plants antimicrobial activity. The most relevant results from the published studies are summarized and discussed. The species in genus of Artemisia, Echinacea, Centaurea, Baccharis, and Calendula showed antimicrobial activity. Most of these species are usually used as ethno medicines to treat infection, inflammation, and parasitics. The effective part or component for antimicrobial was essential oil and crude extract, and essential oil attracted more attention. It was also reported that nanoparticles coated with crude extract were effective against multidrug resistant bacteria. For multidrug resistant bacteria study, the species in Armtemisia were the most investigated, and Staphylococcus aureus and Escherichia coli were the most studied multidrug resistant strains. The antimicrobial activity was evaluated mainly based on the results of minimum inhibitory concentration (MIC). Few reports have been reported on minimum bactericide concentration (MBC) and its antibacterial mechanisms. According to the reported study results, some plants in Asteraceae have the potential to be developed as bacteriostatic agents and against multidrug resistant bacteria. However, most studies are still in vitro, further clinical and applied studies are needed.
Collapse
|
8
|
Wei C, Cui P, Liu X. Antibacterial Activity and Mechanism of Madecassic Acid against Staphylococcus aureus. Molecules 2023; 28:1895. [PMID: 36838882 PMCID: PMC9967526 DOI: 10.3390/molecules28041895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Antibacterial resistance has become one of the most serious problems threating global health. To overcome this urgent problem, many scientists have paid great attention to developing new antibacterial drugs from natural products. Hence, for exploring new antibacterial drugs from Chinese medicine, a series of experiments were carried out for verifying and elucidating the antibacterial activity and mechanisms of madecassic acid (MA), which is an active triterpenoid compound isolated from the traditional Chinese medicine, Centella asiatica. The antibacterial activity was investigated through measuring the diameter of the inhibition zone, the minimum inhibitory concentration (MIC), the growth curve, and the effect on the bacterial biofilm, respectively. Meanwhile, the antibacterial mechanism was also discussed from the aspects of cell wall integrity variation, cell membrane permeability, and the activities of related enzymes in the respiratory metabolic pathway before and after the intervention by MA. The results showed that MA had an inhibitory effect on eight kinds of pathogenic bacteria, and the MIC values for Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Bacillus megaterium were 31.25, 62.5, 250, 125, 62.5, and 62.5 µg/mL, respectively. For instance, 31.25 µg/mL MA could inhibit the growth of Staphylococcus aureus within 28 h. The antibacterial mechanism experiments confirmed that MA could destroy the integrity of the cell membrane and cell wall of Staphylococcus aureus, causing the leakage of macromolecular substances, inhibiting the synthesis of soluble proteins, reducing the activities of succinate dehydrogenase and malate dehydrogenase, and interacting with DNA, leading to the relaxation and ring opening of supercoiled DNA. Besides, the activities of DNA topoisomerase I and II were both inhibited by MA, which led to the cell growth of Staphylococcus aureus being repressed. This study provides a theoretical basis and reference for the application of MA in the control and inhibition of food-borne Staphylococcus aureus.
Collapse
Affiliation(s)
- Chunling Wei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Peiwu Cui
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Research Lab of TCM Property & Efficacy, Level 3, National Administration of TCM, Changsha 410208, China
- Mycomedicine Research Lab, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiangqian Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
9
|
Liu P, Zhong L, Xiao J, Hu Y, Liu T, Ren Z, Wang Y, Zheng K. Ethanol extract from Artemisia argyi leaves inhibits HSV-1 infection by destroying the viral envelope. Virol J 2023; 20:8. [PMID: 36647143 PMCID: PMC9841929 DOI: 10.1186/s12985-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widely disseminated virus that establishes latency in the brain and causes occasional but fatal herpes simplex encephalitis. Currently, acyclovir (ACV) is the main clinical drug used in the treatment of HSV-1 infection, and the failure of therapy in immunocompromised patients caused by ACV-resistant HSV-1 strains necessitates the requirement to develop novel anti-HSV-1 drugs. Artemisia argyi, a Traditional Chinese Medicine, has been historically used to treat inflammation, bacterial infection, and cancer. In this study, we demonstrated the antiviral effect and mechanism of ethanol extract of A. argyi leaves (hereafter referred to as 'AEE'). We showed that AEE at 10 μg/ml exhibits potent antiviral effects on both normal and ACV-resistant HSV-1 strains. AEE also inhibited the infection of HSV-2, rotavirus, and influenza virus. Transmission electron microscopy revealed that AEE destroys the membrane integrity of HSV-1 viral particles, resulting in impaired viral attachment and penetration. Furthermore, mass spectrometry assay identified 12 major components of AEE, among which two new flavones, deoxysappanone B 7,3'-dimethyl ether, and 3,7-dihydroxy-3',4'-dimethoxyflavone, exhibited the highest binding affinity to HSV-1 glycoprotein gB at the surface site critical for gB-gH-gL interaction and gB-mediated membrane fusion, suggesting their involvement in inactivating virions. Therefore, A. argyi is an important source of antiviral drugs, and the AEE may be a potential novel antiviral agent against HSV-1 infection.
Collapse
Affiliation(s)
- Ping Liu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Lishan Zhong
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Ji Xiao
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Yuze Hu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Tao Liu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Zhe Ren
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Yifei Wang
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Yuan Y, Liu Q, Huang Y, Qi M, Yan H, Li W, Zhuang H. Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus aureus and Its Application in Juices. Molecules 2022; 27:molecules27207136. [PMID: 36296729 PMCID: PMC9612228 DOI: 10.3390/molecules27207136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial Photodynamic Treatment (aPDT) is a non-thermal sterilization technology, which can inactivate common foodborne pathogens. In the present study, photodynamic inactivation on Staphylococcus aureus (S. aureus) with different concentrations of curcumin and light dose was evaluated and the mechanisms were also investigated. The results showed that curcumin-based aPDT could inactivate S. aureus cells by 6.9 log CFU/mL in phosphate buffered saline (PBS). Moreover, the modified Gompertz model presented a good fit at the inactivation data of S. aureus. Photodynamic treatment caused cell membrane damage as revealed by analyzing scanning electron microscopy (SEM) images. Leakage of intracellular constituents further indicated that cell membrane permeability was changed. Flow cytometry with double staining demonstrated that cell membrane integrity and the activity of nonspecific esterase were destroyed. Compared with the control group, intracellular reactive oxygen species (ROS) levels caused by photodynamic treatment significantly increased. Furthermore, curcumin-based aPDT reduced S. aureus by 5 log CFU/mL in juices. The color of the juices was also tested using a Chromatic meter, and it was found that b* values were the most markedly influenced by photodynamic treatment. Overall, curcumin-based aPDT had strong antibacterial activity against S. aureus. This approach has the potential to remove foodborne pathogens from liquid food.
Collapse
|
11
|
Albaqami JJ, Benny TP, Hamdi H, Altemimi AB, Kuttithodi AM, Job JT, Sasidharan A, Narayanankutty A. Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp. Molecules 2022; 27:7119. [PMID: 36296712 PMCID: PMC9611367 DOI: 10.3390/molecules27207119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H2O2 scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.46 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.
Collapse
Affiliation(s)
- Jawaher J. Albaqami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tancia P. Benny
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Hamida Hamdi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Anju Sasidharan
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| |
Collapse
|