1
|
Rahiman N, Zamani P, Badiee A, Arabi L, Alavizadeh SH, Jaafari MR. An insight into the role of liposomal therapeutics in the reversion of Multiple Sclerosis. Expert Opin Drug Deliv 2021; 18:1795-1813. [PMID: 34747298 DOI: 10.1080/17425247.2021.2003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS), as an autoimmune disease, has complicated immunopathology, which makes its management relevant to various factors. Novel pharmaceutical vehicles, especially liposomes, can support efficacious handling of this disease both in early detection and prognosis and also in a therapeutic manner. The most well-known trigger of MS onset is the predominance of cellular to humoral immunity and enhancement of inflammatory cytokines level. The installation of liposomes as nanoparticles to control this disease holds great promise up to now. AREAS COVERED Various types of liposomes with different properties and purposes have been formulated and targeted immune cells with their surface manipulations. They may be encapsulated with anti-inflammatory, MS-related therapeutics, or immunodominant myelin-specific peptides for attaining a higher therapeutic efficacy of the drugs or tolerance induction. Cationic liposomes are also highly applicable for gene delivery of the anti-inflammatory cytokines or silencing the inflammatory cytokines. Liposomes have also been used as biotools for comprehending MS pathomechanisms or as diagnostic agents. EXPERT OPINION The efforts to manage MS through nanomedicine, especially liposomal therapeutics, pave a new avenue to a high-throughput medication of this autoimmune disease and their translation to the clinic in the future for overcoming the challenges that MS patients confront.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Macrophage Depletion via Clodronate Pretreatment Reduces Transgene Expression from AAV Vectors In Vivo. Viruses 2021; 13:v13102002. [PMID: 34696433 PMCID: PMC8538323 DOI: 10.3390/v13102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023] Open
Abstract
Adeno-associated virus is a popular gene delivery vehicle for gene therapy studies. A potential roadblock to widespread clinical adoption is the high vector doses required for efficient transduction in vivo, and the potential for subsequent immune responses that may limit prolonged transgene expression. We hypothesized that the depletion of macrophages via systemic delivery of liposome-encapsulated clodronate would improve transgene expression if given prior to systemic AAV vector administration, as has been shown to be the case with adenoviral vectors. Contrary to our expectations, clodronate liposome pretreatment resulted in significantly reduced transgene expression in the liver and heart, but permitted moderate transduction of the white pulp of the spleen. There was a remarkable localization of transgene expression from the red pulp to the center of the white pulp in clodronate-treated mice compared to untreated mice. Similarly, a greater proportion of transgene expression could be observed in the medulla located in the center of the lymph node in mice treated with clodronate-containing liposomes as compared to untreated mice where transgene expression was localized primarily to the cortex. These results underscore the highly significant role that the immune system plays in influencing the distribution and relative numbers of transduced cells in the context of AAV-mediated gene delivery.
Collapse
|
3
|
McDougal CE, Morrow ZT, Christopher T, Kim S, Carter D, Stevenson DM, Amador-Noguez D, Miller MJ, Sauer JD. Phagocytes produce prostaglandin E2 in response to cytosolic Listeria monocytogenes. PLoS Pathog 2021; 17:e1009493. [PMID: 34555127 PMCID: PMC8491950 DOI: 10.1371/journal.ppat.1009493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is an intracellular bacterium that elicits robust CD8+ T-cell responses. Despite the ongoing development of L. monocytogenes-based platforms as cancer vaccines, our understanding of how L. monocytogenes drives robust CD8+ T-cell responses remains incomplete. One overarching hypothesis is that activation of cytosolic innate pathways is critical for immunity, as strains of L. monocytogenes that are unable to access the cytosol fail to elicit robust CD8+ T-cell responses and in fact inhibit optimal T-cell priming. Counterintuitively, however, activation of known cytosolic pathways, such as the inflammasome and type I IFN, lead to impaired immunity. Conversely, production of prostaglandin E2 (PGE2) downstream of cyclooxygenase-2 (COX-2) is essential for optimal L. monocytogenes T-cell priming. Here, we demonstrate that vacuole-constrained L. monocytogenes elicit reduced PGE2 production compared to wild-type strains in macrophages and dendritic cells ex vivo. In vivo, infection with wild-type L. monocytogenes leads to 10-fold increases in PGE2 production early during infection whereas vacuole-constrained strains fail to induce PGE2 over mock-immunized controls. Mice deficient in COX-2 specifically in Lyz2+ or CD11c+ cells produce less PGE2, suggesting these cell subsets contribute to PGE2 levels in vivo, while depletion of phagocytes with clodronate abolishes PGE2 production completely. Taken together, this work demonstrates that optimal PGE2 production by phagocytes depends on L. monocytogenes access to the cytosol, suggesting that one reason cytosolic access is required to prime CD8+ T-cell responses may be to facilitate production of PGE2.
Collapse
Affiliation(s)
- Courtney E. McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Zachary T. Morrow
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tighe Christopher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Drake Carter
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.
Collapse
Affiliation(s)
- Jida Liu
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
5
|
Liu J, Seol DW. Helper virus-free gutless adenovirus (HF-GLAd): a new platform for gene therapy. BMB Rep 2020; 53:565-575. [PMID: 32958121 PMCID: PMC7704218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 08/05/2024] Open
Abstract
Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replicationcompetent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases. [BMB Reports 2020; 53(11): 565-575].
Collapse
Affiliation(s)
- Jida Liu
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
6
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
7
|
Lasarte-Cia A, Lozano T, Pérez-González M, Gorraiz M, Iribarren K, Hervás-Stubbs S, Sarobe P, Rabal O, Cuadrado-Tejedor M, García-Osta A, Casares N, Lasarte JJ. Immunomodulatory Properties of Carvone Inhalation and Its Effects on Contextual Fear Memory in Mice. Front Immunol 2018; 9:68. [PMID: 29422905 PMCID: PMC5788902 DOI: 10.3389/fimmu.2018.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1β, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-γ. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases.
Collapse
Affiliation(s)
- Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Pérez-González
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Kristina Iribarren
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pablo Sarobe
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
8
|
Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:205-39. [PMID: 27558823 DOI: 10.1007/978-3-319-39406-0_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence.
Collapse
|
9
|
Illingworth S, Di Y, Bauzon M, Lei J, Duffy MR, Alvis S, Champion B, Lieber A, Hermiston T, Seymour LW, Beadle J, Fisher K. Preclinical Safety Studies of Enadenotucirev, a Chimeric Group B Human-Specific Oncolytic Adenovirus. Mol Ther Oncolytics 2017; 5:62-74. [PMID: 28480328 PMCID: PMC5415321 DOI: 10.1016/j.omto.2017.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/18/2017] [Indexed: 11/26/2022] Open
Abstract
Enadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies. In this manuscript, we describe our tailored preclinical strategy designed to evaluate the key biological properties of enadenotucirev. As enadenotucirev does not replicate in animal cells, a panel of primary human cells was used to evaluate enadenotucirev replication selectivity in vitro, demonstrating that virus genome levels were >100-fold lower in normal cells relative to tumor cells. Acute intravenous tolerability in mice was used to assess virus particle-mediated toxicology and effects on innate immunity. These studies showed that particle toxicity could be ameliorated by dose fractionation, using an initial dose of virus to condition the host such that cytokine responses to subsequent doses were significantly attenuated. This, in turn, supported the initiation of a phase I intravenous clinical trial with a starting dose of 1 × 1010 virus particles given on days 1, 3, and 5.
Collapse
Affiliation(s)
| | - Ying Di
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Maxine Bauzon
- Coagulant Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Janet Lei
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Simon Alvis
- PsiOxus Therapeutics Ltd., Abingdon OX14 4SD, UK
| | | | - André Lieber
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Terry Hermiston
- Coagulant Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Len W. Seymour
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - John Beadle
- PsiOxus Therapeutics Ltd., Abingdon OX14 4SD, UK
| | - Kerry Fisher
- PsiOxus Therapeutics Ltd., Abingdon OX14 4SD, UK
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
10
|
Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM, Toth K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J Virol 2017; 91:e00284-17. [PMID: 28250128 PMCID: PMC5411597 DOI: 10.1128/jvi.00284-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Abstract
In vivo depletion of T lymphocytes is a means of studying the role of specific T cell populations during defined phases of in vivo immune responses. In this unit, a protocol is provided for injecting monoclonal antibodies (mAbs) into wild-type adult mice. Depletion of the appropriate subset of cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on a variety of in vivo immune responses. The depleted condition may be maintained by repeated injections of the monoclonal antibody, or reversed by normal thymopoiesis following discontinuation of antibody administration.
Collapse
Affiliation(s)
- Karen Laky
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|
12
|
Ranki T, Pesonen S, Hemminki A, Partanen K, Kairemo K, Alanko T, Lundin J, Linder N, Turkki R, Ristimäki A, Jäger E, Karbach J, Wahle C, Kankainen M, Backman C, von Euler M, Haavisto E, Hakonen T, Heiskanen R, Jaderberg M, Juhila J, Priha P, Suoranta L, Vassilev L, Vuolanto A, Joensuu T. Phase I study with ONCOS-102 for the treatment of solid tumors - an evaluation of clinical response and exploratory analyses of immune markers. J Immunother Cancer 2016; 4:17. [PMID: 26981247 PMCID: PMC4791966 DOI: 10.1186/s40425-016-0121-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Background We conducted a phase I study with a granulocyte macrophage colony stimulating factor (GMCSF)-expressing oncolytic adenovirus, ONCOS-102, in patients with solid tumors refractory to available treatments. The objectives of the study were to determine the optimal dose for further use and to assess the safety, tolerability and adverse event (AE) profile of ONCOS-102. Further, the response rate and overall survival were evaluated as well as preliminary evidence of disease control. As an exploratory endpoint, the effect of ONCOS 102 on biological correlates was examined. Methods The study was conducted using a classic 3 + 3 dose escalation study design involving 12 patients. Patients were repeatedly treated intratumorally with ONCOS-102 plus daily low-dose oral cyclophosphamide (CPO). Tumor response was evaluated with diagnostic positron emission tomography (PET) and computed tomography (CT). Tumor biopsies were collected at baseline and after treatment initiation for analysis of immunological correlates. Peripheral blood mononuclear cells (PBMCs) were collected at baseline and during the study to assess antigen specificity of CD8+ T cells by interferon gamma (IFNγ) enzyme linked immunospot assay (ELISPOT). Results No dose limiting toxicity (DLT) or maximum tolerated dose (MTD) was identified for ONCOS-102. Four out of ten (40 %) evaluable patients had disease control based on PET/CT scan at 3 months and median overall survival was 9.3 months. A short-term increase in systemic pro-inflammatory cytokines and a prominent infiltration of TILs to tumors was seen post-treatment in 11 out of 12 patients. Two patients showed marked infiltration of CD8+ T cells to tumors and concomitant systemic induction of tumor-specific CD8+ T cells. Interestingly, high expression levels of genes associated with activated TH1 cells and TH1 type immune profile were observed in the post-treatment biopsies of these two patients. Conclusions ONCOS-102 is safe and well tolerated at the tested doses. All three examined doses may be used in further development. There was evidence of antitumor immunity and signals of clinical efficacy. Importantly, treatment resulted in infiltration of CD8+ T cells to tumors and up-regulation of PD-L1, highlighting the potential of ONCOS-102 as an immunosensitizing agent for combinatory therapies with checkpoint inhibitors. Trial registration NCT01598129. Registered 19/04/2012
Collapse
Affiliation(s)
| | | | - Akseli Hemminki
- Cancer Gene Therapy Group, Hartman Institute, University of Helsinki, Helsinki, Finland ; Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | - Kalevi Kairemo
- Docrates Cancer Center, Helsinki, Finland ; The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Johan Lundin
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Nina Linder
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Riku Turkki
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Ari Ristimäki
- Pathology, Research Programs Unit and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elke Jäger
- Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Julia Karbach
- Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Claudia Wahle
- Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther 2015; 22:696-706. [PMID: 25938192 DOI: 10.1038/gt.2015.45] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/03/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Gene transfer of potent immunostimulatory cytokines such as interleukin-12 (IL-12) is a potential treatment for advanced cancer. Different vectors and IL-12 modifications have been developed to avoid side effects associated with high serum levels of the cytokine, while preserving its antitumor properties. Here we have evaluated two alternative strategies using the Syrian hamster as a model for pancreatic cancer metastatic to the liver. Local administration of an oncolytic adenovirus (OAV) expressing a single-chain version of IL-12 caused transient, very intense elevations of IL-12 in serum, resulting in severe toxicity at sub-therapeutic doses. Anchoring IL-12 to the membrane of infected cells by fusion with the transmembrane domain of CD4 reduced systemic exposure to IL-12 and increased the tolerance to the OAV. However, only a modest increase in the therapeutic range was achieved because antitumor potency was also reduced. In contrast, systemic administration of a helper-dependent adenoviral vector (HDAd) equipped with a Mifepristone-inducible expression system allowed sustained and controlled IL-12 production from the liver. This treatment was well tolerated and inhibited the progression of hepatic metastases. We conclude that HDAds are safer than OAVs for the delivery of IL-12, and are promising vectors for immunogene therapy approaches against pancreatic cancer.
Collapse
|