1
|
Balcar L, Scheiner B, Urheu M, Weinberger P, Paternostro R, Simbrunner B, Semmler G, Willheim C, Pinter M, Ferenci P, Trauner M, Reiberger T, Stättermayer AF, Mandorfer M. The impact of transmembrane 6 superfamily 2 (TM6SF2) rs58542926 on liver-related events in patients with advanced chronic liver disease. Dig Liver Dis 2023; 55:1072-1080. [PMID: 36863929 DOI: 10.1016/j.dld.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND & AIMS Genetic factors such as the transmembrane 6 superfamily 2 (TM6SF2) rs58542926 single nucleotide variant(SNV) modulate the susceptibility for (advanced) chronic liver disease ([A]CLD). However, the impact of this variant in patients who have already progressed to ACLD is unknown. METHODS The association between TM6SF2-rs58542926 genotype and liver-related events was evaluated in 938 ACLD patients undergoing hepatic venous pressure gradient (HVPG) measurement. RESULTS Mean HVPG was 15±7 mmHg and mean UNOS MELD (2016) 11±5 points. Viral hepatitis (n = 495, 53%) was the most common cause of ACLD, followed by alcohol-related (ARLD; n = 342, 37%) and non-alcoholic fatty liver disease (NAFLD; n = 101, 11%). While 754 (80%) patients harboured the TM6SF2 wild-type (C/C), 174 (19%) and 10 (1%) patients had one or two T-alleles. At baseline, patients with at least one TM6SF2 T-allele had more pronounced portal hypertension (HVPG: 16±7 vs. 15±7 mmHg; p = 0.031), higher gamma-glutamyl transferase levels (123 [63-229] vs. 97 [55-174] UxL-1; p = 0.002), and more commonly hepatocellular carcinoma (17% vs. 12%; p = 0.049). Harbouring the TM6SF2 T-allele was associated with the composite endpoint hepatic decompensation/liver transplantation/liver-related death (SHR: 1.44 [95%CI: 1.14-1.83]; p = 0.003). This was confirmed in multivariable competing risk regression analyses that were adjusted for severity of portal hypertension and hepatic dysfunction at baseline. CONCLUSION The TM6SF2 variant modulates liver disease progression beyond the development of ACLD, as it modifies the risks of hepatic decompensation and liver-related death, independently of baseline liver disease severity.
Collapse
Affiliation(s)
- Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Markus Urheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Patrick Weinberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Willheim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Ferenci
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Evaluation of the association of a variant in PNPLA3 and TM6SF2 with fibrosis progression in patients with chronic hepatitis C infection after eradication: A retrospective study. Gene 2022; 820:146235. [PMID: 35143946 DOI: 10.1016/j.gene.2022.146235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
The relationship of single nucleotide polymorphisms (SNPs) in patatin-like phospholipase domain containing 3 (PNPLA3) rs738409, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, and membrane bound O-acyltransferase domain containing 7 (MBOAT7) rs641738 with outcomes in patients with hepatitis C infection (HCV) is unclear. This study aimed to evaluate the association of PNPLA3, TM6SF2, and MBOAT7 with the baseline fibrosis stage and progression of liver fibrosis after HCV eradication with direct antiviral agents (DAAs). A total of 171 patients who received the DAAs at the Peking University First Hospital between June 2015 and June 2020 were included in the retrospective cohort. Transient elastography was used to determine liver stiffness measurements (LSMs) at the baseline, the end of treatment (EOT), 24 weeks after treatment (W24), and the last follow-up (LFU) visit. We used the QIAamp Blood Mini Kit (Qiagen) for whole blood genomic DNA extraction and polymerase chain reaction for PNPLA3, TM6SF2, and MBOAT7 amplification of the target gene. The PNPLA3 rs738409 SNP was associated with the baseline fibrosis stage in multivariate logistic regression analysis adjusted for other factors, and the adjusted odds ratio (OR) for advanced fibrosis (≥F3) at baseline was 2.52 (95% confidence interval[CI] = 1.096-5.794, p = 0.03). The G and GG alleles were predictive of advanced fibrosis (OR = 1.98, 95% CI = 1.021-4.196, p = 0.015; OR = 3.12, 95% CI = 1.572-6.536, p = 0.005). Similarly, the OR of TM6SF2 rs58542926 at baseline was 2.608 (95% CI = 1.081-6.29, p = 0.033). T and TT alleles were predictive of advanced fibrosis (OR = 2.3, 95% CI = 1.005-5.98, p = 0.007; OR = 3.05, 95% CI = 1.32-6.87, p = 0.001). After adjustment, the MBOAT7 rs641738 T plus TT alleles were not independently associated with the baseline fibrosis stage (95% CI = 0.707-2.959, p = 0.312). At the EOT, there were 35 patients and 136 patients in the fibrosis improvement and fibrosis non-improvement group, respectively. Logistic regression analysis showed that the G allele in PNPLA3 rs738409 was associated with fibrosis progression (OR = 2.47, 95% CI = 1.125-5.89, p = 0.003). The GG alleles were predictive of fibrosis progression (OR = 2.95, 95% CI = 1.35-6.35, p = 0.005). Similarly, the ORs of the T and TT alleles in TM6SF2 rs58542926 for fibrosis progression were 1.82 and 2.21, respectively (95% CI = 1.006-5.373, p = 0.045; 95% CI = 1.18-5.75, p = 0.01). At the W24 visit, we found that there was an association between the G allele in PNPLA3 rs738409 and fibrosis progression (OR = 2.218, 95% CI = 1.095-5.631, p = 0.015). Moreover, GG alleles were also predictive for fibrosis progression (OR = 2.558, 95% CI = 1.252-5.15, p = 0.008). Similarly, the OR of T allele and TT alleles in TM6SF2 rs58542926 for fibrosis progression was 2.056 and 2.652 (95% CI = 1.013-5.592, p = 0.038; 95% CI = 1.25-5.956, p = 0.015). For additional affirmation, we surveyed fibrosis progression utilizing the Cox proportional hazards model. G and GG alleles in PNPLA3 rs738409 were associated with an increased risk of progression to advanced fibrosis in multivariate model (hazard ratio [HR]1.566, 95% CI = 1.02-2.575, p = 0.017; and HR2.109, 95% CI = 1.36-3.271, p = 0.001, respectively). Besides, T and TT alleles in TM6SF2 rs58542926 were associated with an increased risk of progression to advanced fibrosis in multivariate model (HR = 1.322, 95% CI = 1.003-1.857, p = 0.045; and HR = 1.855, 95% CI = 1.35-2.765, p = 0.006, respectively). In contrast, rs641738 in MBOAT7 did not show a significant trend in the univariate and multivariate models. The PNPLA3 CG/GG SNP at rs738409 and TM6SF2 CT/TT SNP at rs58542926 were associated with the baseline fibrosis stage and fibrosis progression after HCV eradication with DAAs.
Collapse
|
3
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
4
|
Basyte-Bacevice V, Skieceviciene J, Valantiene I, Sumskiene J, Petrenkiene V, Kondrackiene J, Petrauskas D, Lammert F, Kupcinskas J. TM6SF2 and MBOAT7 Gene Variants in Liver Fibrosis and Cirrhosis. Int J Mol Sci 2019; 20:ijms20061277. [PMID: 30875804 PMCID: PMC6470827 DOI: 10.3390/ijms20061277] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023] Open
Abstract
Previous large-scale genetic studies identified single nucleotide polymorphisms (SNPs) of the TM6SF2 and MBOAT7 genes as risk factors for alcoholic liver cirrhosis and non-alcoholic fatty liver disease. In this study, we tried to evaluate the association between TM6SF2 variant rs58542926 and MBOAT7 variant rs641738 and the risk of hepatic fibrosis or liver cirrhosis of different etiology. In parallel, we also aimed to evaluate whether these two SNPs modify the effects of the PNPLA3 rs738409 risk variant for the development of hepatic fibrosis and liver cirrhosis. The study was conducted at the Department of Gastroenterology, Lithuanian University of Health Sciences Hospital, and included 334 patients with liver cirrhosis, 128 patients with liver fibrosis, and 550 controls. SNPs were genotyped by quantitative PCR, using TaqMan allelic discrimination assays. Overall, TM6SF2 rs58542926 as well as MBOAT7rs641738 were not linked to hepatic fibrosis, alcohol or hepatitis C virus induced liver cirrhosis in an Eastern European population. These genetic variations also did not mediate the effect of PNPLA3 rs738409 SNP for liver developing liver fibrosis or liver cirrhosis.
Collapse
Affiliation(s)
- Viktorija Basyte-Bacevice
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Irena Valantiene
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Jolanta Sumskiene
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Vitalija Petrenkiene
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Jurate Kondrackiene
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Dalius Petrauskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany.
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania.
| |
Collapse
|
5
|
Zhang X, Liu S, Dong Q, Xin Y, Xuan S. The Genetics of Clinical Liver Diseases: Insight into the TM6SF2 E167K Variant. J Clin Transl Hepatol 2018; 6:326-331. [PMID: 30271746 PMCID: PMC6160302 DOI: 10.14218/jcth.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
The transmembrane 6 superfamily member 2 (TM6SF2) gene E167K variant (rs58542926) was identified by exome-wide association study as a nonsynonymous single nucleotide polymorphism associated with nonalcoholic fatty liver disease. The TM6SF2 E167K variant features a C-to-T substitution at nucleotide 499, encoding a glutamate with lysine change at codon 167 (E167K). TM6SF2 is markedly expressed in the liver, small intestine and kidney, and has been proposed as an important risk factor for diseases associated with lipid metabolism. Subsequently, multifunctional studies of the TM6SF2 E167K variant have been carried out in a spectrum of liver diseases, such as nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, fibrosis, cirrhosis, and viral hepatitis. This review summarizes the research status of the TM6SF2 E167K variant in different liver diseases and specific populations, and discusses the potential mechanisms of the TM6SF2 E167K variant's role in the progression of various liver diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Shousheng Liu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Quanjiang Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Yongning Xin
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Shiying Xuan
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
6
|
Recent Advances in the Pathogenesis of Hepatitis C Virus-Related Non-Alcoholic Fatty Liver Disease and Its Impact on Patients Cured of Hepatitis C. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11901-017-0370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
The effect of the TM6SF2 E167K variant on liver steatosis and fibrosis in patients with chronic hepatitis C: a meta-analysis. Sci Rep 2017; 7:9273. [PMID: 28839198 PMCID: PMC5571206 DOI: 10.1038/s41598-017-09548-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
The impact of Transmembrane 6 superfamily member 2 (TM6SF2) E167K variant, which causes hepatocellular fat retention by altering lipoprotein secretion, on liver damage and metabolic traits in chronic hepatitis C patients is still debated. We performed a systematic review and meta-analysis to clarify this relationship. Four studies with a total of 4325 patients were included. The risk of histologically-determined advanced steatosis, fibrosis, and cirrhosis (but not of severe inflammation) were increased in carriers of the TM6SF2 variant (P < 0.05). Unlike the inconsistent association with steatosis severity, due to the confounding effect of infection by the genotype-3 hepatitis C virus, the TM6SF2 variant was robustly associated with advanced fibrosis (OR = 1.07; 95% confidence interval [CI] = 1.01–1.14) and in particular with cirrhosis (OR = 2.05; 95% CI = 1.39–3.02). Regarding metabolic features, individuals positive for the TM6SF2 variant exhibited 5.8–12.0% lower levels of circulating triglycerides and non-HDL cholesterol (P < 0.05). Carriers of the variant were leaner, but there was high heterogeneity across studies (I2 = 97.2%). No significant association was observed between the TM6SF2 variant and insulin resistance or hepatitis C viral load (both P > 0.05). In conclusion, the TM6SF2 E167K variant promotes the development of steatosis, fibrosis and cirrhosis in patients with chronic hepatitis C. Conversely, this variant reduces circulating atherogenic lipid fractions.
Collapse
|
8
|
Urzua A, Mezzano G, Brahm J, Poniachik J, Miranda J, Caceres DD, Carreno L, Venegas M. TM6SF2 rs58542926 Polymorphism is not Associated With Risk of Steatosis or Fibrosis in Chilean Patients With Chronic Hepatitis C. HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.44365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
9
|
Salameh H, Masadeh M, Al Hanayneh M, Petros V, Maslonka M, Nanda A, Singal AK. PNPLA3 polymorphism increases risk for and severity of chronic hepatitis C liver disease. World J Hepatol 2016; 8:1584-1592. [PMID: 28050240 PMCID: PMC5165273 DOI: 10.4254/wjh.v8.i35.1584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the association of PNPLA3 polymorphisms in chronic hepatitis C patients and development of liver disease spectrum.
METHODS Literature was searched systematically from PubMed/MEDLINE, EMBASE, and Cochrane search engines for full-length articles written in English that examined PNPLA3 polymorphism in chronic hepatitis C (CHC) patients. Studies evaluating the association of PNPLA3 polymorphism spectrum (fatty liver, steatohepatitis, cirrhosis, and hepatocellular carcinoma) of CHC were included. Pooled data are reported as OR with 95%CI. Our study endpoint was the risk of the entire liver disease spectrum including: Steatosis/fatty liver, cirrhosis, and hepatocellular carcinoma in CHC patients with PNPLA3 polymorphisms.
RESULTS Of 380 studies identified, a total of 53 studies were included for full-text review. Nineteen on chronic hepatitis C were eligible for analysis. Pooled ORs for rs738409 GG compared to CC and CG among patients with fatty liver was 2.214 (95%CI: 1.719-2.853). ORs among advanced fibrosis/cirrhosis were 1.762 (95%CI: 1.258-2.468). Similar odds ratios among hepatocellular carcinoma patients were 2.002 (95%CI: 1.519-2.639). Pooled ORs for rs738409 GG and CG compared to CC among patients with fatty liver were 1.750 (95%CI: 1.542-1.986). Pooled ORs for advanced fibrosis/cirrhosis patients were 1.613 (95%CI: 1.211-2.147). All analyses were homogenous and without publication bias except one. The associations were maintained after adjusting for publication bias and heterogeneity.
CONCLUSION PNPLA3 polymorphisms have strong association with increased risk and severity of the liver disease spectrum in CHC patients.
Collapse
|
10
|
Sagnelli C, Merli M, Uberti-Foppa C, Hasson H, Grandone A, Cirillo G, Salpietro S, Minichini C, Starace M, Messina E, Morelli P, Miraglia Del Giudice E, Lazzarin A, Coppola N, Sagnelli E. TM6SF2 E167K variant predicts severe liver fibrosis for human immunodeficiency/hepatitis C virus co-infected patients, and severe steatosis only for a non-3 hepatitis C virus genotype. World J Gastroenterol 2016; 22:8509-8518. [PMID: 27784963 PMCID: PMC5064032 DOI: 10.3748/wjg.v22.i38.8509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/06/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the impact of the Glu167Lys (E167K) transmembrane 6 superfamily member 2 (TM6SF2) variant on the biochemical and morphologic expression of liver lesions in human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infected patients.
METHODS The study comprised 167 consecutive patients with HIV/HCV coinfection and biopsy-proven chronic hepatitis. A pathologist graded liver fibrosis and necroinflammation using the Ishak scoring system, and steatosis using Kleiner’s scoring system. Patients were genotyped for TM6SF2 E167K (rs58542926) by real-time Polymerase chain reaction. The 167 patients, 35 therapy-naive and 132 receiving ART, were prevalently males (73.6%), the median age was 40.7 years and the immunological condition good (median CD4+ cells/mm3 = 505.5).
RESULTS The 17 patients with the TM6SF2 E167K variant, compared with the 150 with TM6SF2-E/E, showed higher AST (P = 0.02) and alanine aminotransferase (P = 0.02) and higher fibrosis score (3.1 ± 2.0 vs 2.3 ± 1.5, P = 0.05). In a multivariate analysis, TM6SF2 E167K was independently associated with severe fibrosis. The same analysis showed that HCV-genotype 3, present in 42.2% of patients was an independent predictor of severe steatosis. The association of TM6SF2 E167K with severe steatosis, absent for the whole group of 167 patients, was re-evaluated separately for HCV-genotype 3 and non-3 patients: No factor was independently associated with severe steatosis in the HCV-genotype-3 subgroup, whereas an independent association was observed between severe steatosis and TM6SF2 E167K in non-3 HCV genotypes. No association between the TM6SF2 E167K variant and severe liver necroinflammation was observed.
CONCLUSION In HIV/HCV coinfection the TM6SF2 E167K variant is an independent predictor of severe fibrosis, but appears to be independently associated with severe steatosis only for patients with a non-3 HCV genotype.
Collapse
|
11
|
Eslam M, Mangia A, Berg T, Chan HLY, Irving WL, Dore GJ, Abate ML, Bugianesi E, Adams LA, Najim MAM, Miele L, Weltman M, Mollison L, Cheng W, Riordan S, Fischer J, Romero-Gomez M, Spengler U, Nattermann J, Rahme A, Sheridan D, Booth DR, McLeod D, Powell E, Liddle C, Douglas MW, van der Poorten D, George J. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology 2016; 64:34-46. [PMID: 26822232 DOI: 10.1002/hep.28475] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/27/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED A genome-wide exome association study has identified the transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 variant encoding an E167K substitution as a genetic determinant of hepatic steatosis in nonalcoholic fatty liver disease (NAFLD). The roles of this variant across a spectrum of liver diseases and pathologies and on serum lipids comparing viral hepatitis to NAFLD and viral load in chronic viral hepatitis, as well as its intrahepatic molecular signature, have not been well characterized. We undertook detailed analyses in 3260 subjects with viral and nonviral liver diseases and in healthy controls. Serum inflammatory markers and hepatic expression of TM6SF2 and genes regulating lipid metabolism were assessed in a subset with chronic hepatitis C (CHC). The rs58542926 T allele was more prevalent in 502 NAFLD patients than controls (P = 0.02) but not different in cohorts with CHC (n = 2023) and chronic hepatitis B (n = 507). The T allele was associated with alterations in serum lipids and hepatic steatosis in all diseases and with reduced hepatic TM6SF2 and microsomal triglyceride transfer protein expression. Interestingly, the substitution was associated with reduced CHC viral load but increased hepatitis B virus DNA. The rs58542926 T allele had no effect on inflammation, impacted ≥F2 fibrosis in CHC and NAFLD assessed cross-sectionally (odds ratio = 1.39, 95% confidence interval 1.04-1.87, and odds ratio = 1.62, 95% confidence interval 1.03-2.52, respectively; P < 0.03 for both), but had no effect on fibrosis progression in 1174 patients with CHC and a known duration of infection. CONCLUSION The TM6SF2 E167K substitution promotes steatosis and lipid abnormalities in part by altering TM6SF2 and microsomal triglyceride transfer protein expression and differentially impacts CHC and chronic hepatitis B viral load, while effects on fibrosis are marginal. (Hepatology 2016;64:34-46).
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - Alessandra Mangia
- Division of Hepatology, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Henry Lik Yuen Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - William L Irving
- NIHR Biomedical Research Unit in Gastroenterology and the Liver, University of Nottingham, Nottingham, UK
| | - Gregory J Dore
- Kirby Institute, The University of New South Wales, Sydney, NSW, Australia.,St. Vincent's Hospital, Sydney, NSW, Australia
| | - Maria Lorena Abate
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Leon A Adams
- School of Medicine and Pharmacology, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Mustafa A M Najim
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia.,Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Lindsay Mollison
- Department of Gastroenterology and Hepatology, Fremantle Hospital, Fremantle, WA, Australia
| | - Wendy Cheng
- Department of Gastroenterology & Hepatology, Royal Perth Hospital, WA, Australia
| | - Stephen Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital and University of New South Wales, Sydney, NSW, Australia
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Manuel Romero-Gomez
- Unit for the Clinical Management of Digestive Diseases and CIBERehd, Hospital Universitario de Valme, Sevilla, Spain
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Antony Rahme
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - David Sheridan
- Institute of Translational and Stratified Medicine, Plymouth University, UK
| | - David R Booth
- Institute of Immunology and Allergy Research, Westmead Hospital and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, Australia
| | - Elizabeth Powell
- The University of Queensland, School of Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - David van der Poorten
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Meta-analysis of the influence of TM6SF2 E167K variant on Plasma Concentration of Aminotransferases across different Populations and Diverse Liver Phenotypes. Sci Rep 2016; 6:27718. [PMID: 27278285 PMCID: PMC4899730 DOI: 10.1038/srep27718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022] Open
Abstract
A nonsynonymous E167K (rs58542926 C/T) variant in TM6SF2 gene was recently associated with nonalcoholic fatty liver disease (NAFLD). We explored the association between E167K and plasma concentrations of alanine (ALT) and aspartate (AST) aminotransferases through a meta-analysis. We also estimated the strength of the effect across diverse liver phenotypes, including NAFLD and chronic viral hepatitis; fourteen studies were included. We found that ALT (p = 3.2 × 10−6, n = 94,414) and AST (p = 0007, n = 93,809) levels were significantly associated with rs58542926 in NAFLD. By contrast, rs58542926 was not associated with either ALT (p = 0.24, n = 4187) or AST (p = 0.17, n = 2678) levels in four studies on chronic hepatitis. In conclusion, the results of the pooled estimates in patients with NAFLD showed that carriers of the T allele (EK + KK), when compared with homozygous subjects for the C allele (EE genotype) have increased levels of aminotransferases; however, this increase represents –2.5 (9.8%) and 1.2 (5%) IU/L of ALT and AST respectively, which is fairly small compared with the large effect of PNPLA3- rs738409-G allele that is associated with a –28% increase in serum ALT.
Collapse
|
13
|
Chen LZ, Xia HHX, Xin YN, Lin ZH, Xuan SY. TM6SF2 E167K Variant, a Novel Genetic Susceptibility Variant, Contributing to Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2015; 3:265-70. [PMID: 26807382 PMCID: PMC4721894 DOI: 10.14218/jcth.2015.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of liver dysfunction worldwide, and its prevalence is highly associated with genetic susceptibility. The transmembrane 6 superfamily member 2 (TM6SF2) E167K variant represents a general genetic determinant of hepatic triglyceride content and lobular inflammation, and its presence appears to be directly involved in the pathogenesis and development of NAFLD. Although this variant appears to be a novel powerful modifier in the development of NAFLD, whether it is associated with an increased risk of NAFLD-related liver fibrosis and hepatocellular carcinoma (HCC) remains to be determined. The aim of this review is to describe the functions of the TM6SF2 E167K variant and its association with NAFLD, with particular emphasis on the underlying mechanisms of its role in the development and progression of NAFLD. Additionally, the links between the TM6SF2 E167K variant and NAFLD-related liver fibrosis and HCC will be discussed.
Collapse
Affiliation(s)
- Li-Zhen Chen
- Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Harry Hua-Xiang Xia
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yong-Ning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
- Correspondenceto: Shi-Ying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, 1 Jiaozhou Road, Qingdao 266011, Shandong, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yong-Ning Xin, Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, 1 Jiaozhou Road, Qingdao 266011, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Zhong-Hua Lin
- Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
- Correspondenceto: Shi-Ying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, 1 Jiaozhou Road, Qingdao 266011, Shandong, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yong-Ning Xin, Department of Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, 1 Jiaozhou Road, Qingdao 266011, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
14
|
Kahali B, Halligan B, Speliotes EK. Insights from Genome-Wide Association Analyses of Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2015; 35:375-91. [PMID: 26676813 PMCID: PMC4941959 DOI: 10.1055/s-0035-1567870] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by hepatic steatosis, which can progress to nonalcoholic steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma in the absence of excessive alcohol consumption. Nonalcoholic fatty liver disease will become the number one cause of liver disease worldwide by 2020. Nonalcoholic fatty liver disease is correlated albeit imperfectly with obesity and other metabolic diseases such as diabetes, hyperlipidemia, and cardiovascular disease, but exactly how having one of these diseases contributes to the development of other metabolic diseases is only now being elucidated. Development of NAFLD and related metabolic diseases is genetically influenced in the population, and recent genome-wide association studies (GWASs) have discovered genetic variants that associate with these diseases. These GWAS-associated variants cannot only help us to identify individuals at high risk of developing NAFLD, but also to better understand its pathophysiology so that we can develop more effective treatments for this disease and related metabolic diseases in the future.
Collapse
Affiliation(s)
- Bratati Kahali
- Division of Gastroenterology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Brian Halligan
- Division of Gastroenterology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth K. Speliotes
- Division of Gastroenterology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|