1
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Ma P, Ou Y. Correlation between the dopaminergic system and inflammation disease: a review. Mol Biol Rep 2023; 50:7043-7053. [PMID: 37382774 DOI: 10.1007/s11033-023-08610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The dopaminergic system is inextricably linked with neurological diseases and addiction. In recent years, many studies have found that the dopaminergic system involves in inflammatory diseases, particularly neuroinflammatory diseases development; This review summarizes the studies of dopaminergic system in inflammatory diseases, and specifically highlights the mechanisms of how dopaminergic system regulates inflammation; In addition, we speculate that there are some cavities in current research, including mixed usage of inhibitors, agonists and lack of systematic controls; We expect this review would provide directions to future research of dopaminergic system and inflammatory diseases.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
3
|
Oliviero B, Dei Cas M, Zulueta A, Maiello R, Villa A, Martinelli C, Del Favero E, Falleni M, Montavoci L, Varchetta S, Mele D, Donadon M, Soldani C, Franceschini B, Maestri M, Piccolo G, Barabino M, Bianchi PP, Banales JM, Mantovani S, Mondelli MU, Caretti A. Ceramide present in cholangiocarcinoma-derived extracellular vesicle induces a pro-inflammatory state in monocytes. Sci Rep 2023; 13:7766. [PMID: 37173330 PMCID: PMC10182100 DOI: 10.1038/s41598-023-34676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis. The effect of iCCA-derived EVs as mediators of inflammation was assessed on monocytes by flow cytometry. iCCA-derived EVs showed downregulation of all SPL species. Of note, poorly-differentiated iCCA-derived EVs showed a higher ceramide and dihydroceramide content compared with moderately-differentiated iCCA-derived EVs. Of note, higher dihydroceramide content was associated with vascular invasion. Cancer-derived EVs induced the release of pro-inflammatory cytokines in monocytes. Inhibition of synthesis of ceramide with Myriocin, a specific inhibitor of the serine palmitoyl transferase, reduced the pro-inflammatory activity of iCCA-derived EVs, demonstrating a role for ceramide as mediator of inflammation in iCCA. In conclusion, iCCA-derived EVs may promote iCCA progression by exporting the excess of pro-apoptotic and pro-inflammatory ceramides.
Collapse
Affiliation(s)
- Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Aida Zulueta
- Neurorehabilitation Unit of Milan Institute, Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Carla Martinelli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Falleni
- Pathology Division, Health Sciences Department, University of Milan, Milan, Italy
| | - Linda Montavoci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Donadon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Piccolo
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Matteo Barabino
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Paolo Pietro Bianchi
- General Surgery Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- SC Immunologia clinica - Malattie infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | - Anna Caretti
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
5
|
Devaraj E, Perumal E, Subramaniyan R, Mustapha N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology 2022; 76:275-285. [PMID: 34773651 DOI: 10.1002/hep.32239] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Elumalai Perumal
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raghunandhakumar Subramaniyan
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Najimi Mustapha
- Laboratory of Pediatric Hepatology and Cell Therapy, IREC Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
6
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
7
|
Pathological Contribution of Extracellular Vesicles and Their MicroRNAs to Progression of Chronic Liver Disease. BIOLOGY 2022; 11:biology11050637. [PMID: 35625364 PMCID: PMC9137620 DOI: 10.3390/biology11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane-enclosed vesicles secreted from most types of cells. EVs encapsulate many diverse bioactive cargoes, such as proteins and nucleic acid, of parental cells and delivers them to recipient cells. Upon injury, the contents altered by cellular stress are delivered into target cells and affect their physiological properties, spreading the disease microenvironment to exacerbate disease progression. Therefore, EVs are emerging as good resources for studying the pathophysiological mechanisms of diseases because they reflect the characteristics of donor cells and play a central role in intercellular communication. Chronic liver disease affects millions of people worldwide and has a high mortality rate. In chronic liver disease, the production and secretion of EVs are significantly elevated, and increased and altered cargoes are packed into EVs, enhancing inflammation, fibrosis, and angiogenesis. Herein, we review EVs released under specific chronic liver disease and explain how EVs are involved in intercellular communication to aggravate liver disease. Abstract Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released by the majority of cells into the extracellular space. Because EVs carry various cargo (protein, lipid, and nucleic acids), they transfer bioinformation that reflects the state of donor cells to recipient cells both in healthy and pathologic conditions, such as liver disease. Chronic liver disease (CLD) affects numerous people worldwide and has a high mortality rate. EVs released from damaged hepatic cells are involved in CLD progression by impacting intercellular communication between EV-producing and EV-receiving cells, thereby inducing a disease-favorable microenvironment. In patients with CLD, as well as in the animal models of CLD, the levels of released EVs are elevated. Furthermore, these EVs contain high levels of factors that accelerate disease progression. Therefore, it is important to understand the diverse roles of EVs and their cargoes to treat CLD. Herein, we briefly explain the biogenesis and types of EVs and summarize current findings presenting the role of EVs in the pathogenesis of CLD. As the role of microRNAs (miRNAs) within EVs in liver disease is well documented, the effects of miRNAs detected in EVs on CLD are reviewed. In addition, we discuss the therapeutic potential of EVs to treat CLD.
Collapse
|
8
|
Yao Q, Yang G, Wang H, Liu J, Zheng J, Lv B, Yang M, Yang Y, Gao C, Guo Y. Aging erythrocyte membranes as biomimetic nanometer carriers of liver-targeting chromium poisoning treatment. Drug Deliv 2021; 28:1455-1465. [PMID: 34236248 PMCID: PMC8274500 DOI: 10.1080/10717544.2021.1949075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chromium poisoning has become one of the most common heavy metal poisoning occupational diseases with high morbidity and mortality. However, most antidotes detoxify the whole body and are highly toxic. To achieve hepato-targeted chromium poisoning detoxification, a novel hepato-targeted strategy was developed using aging erythrocyte membranes (AEMs) as biomimetic material coated with a dimercaptosuccinic acid (DMSA) nanostructured lipid carrier to construct a biomimetic nano-drug delivery system. The particle size, potential, drug loading, encapsulation rate, in vitro release, and stability of the nanoparticles (NPs) were characterized. Confocal microscopy and flow cytometry showed that the prepared NPs could be phagocytized by RAW264.7 macrophage cells. The efficacy of AEM-DMSA-NPs for targeted liver detoxification was evaluated by in vitro MTT analysis and an in vivo model of chromium poisoning. The results showed that the NPs could safely and efficiently achieve targeted liver chromium poisoning detoxification. All the results indicated that the biomimetic nano-drug delivery system mediated by aging erythrocyte membranes and containing DMSA nanoparticles could be used as a novel therapeutic drug delivery system potentially targeting liver detoxification.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Hao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China.,School of Pharmacy, Jiamusi University, Jiamusi, PR China
| | - Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Jinpeng Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Bai Lv
- School of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Yongxue Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
9
|
Mo C, Xie S, Liu B, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Indoleamine 2,3-dioxygenase 1 limits hepatic inflammatory cells recruitment and promotes bile duct ligation-induced liver fibrosis. Cell Death Dis 2021; 12:16. [PMID: 33414436 PMCID: PMC7791029 DOI: 10.1038/s41419-020-03277-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a course of chronic liver dysfunction, can develop into cirrhosis and hepatocellular carcinoma. Inflammatory insult owing to pathogenic factors plays a crucial role in the pathogenesis of liver fibrosis. Indoleamine 2,3-dioxygenase 1 (IDO1) can affect the infiltration of immune cells in many pathology processes of diseases, but its role in liver fibrosis has not been elucidated completely. Here, the markedly elevated protein IDO1 in livers was identified, and dendritic cells (DCs) immune-phenotypes were significantly altered after BDL challenge. A distinct hepatic population of CD11c+DCs was decreased and presented an immature immune-phenotype, reflected by lower expression levels of co-stimulatory molecules (CD40, MHCII). Frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+MHCII+, and CD11c+CD40+ cells in splenic leukocytes were reduced significantly. Notably, IDO1 overexpression inhibited hepatic, splenic CD11c+DCs maturation, mature DCs-mediated T-cell proliferation and worsened liver fibrosis, whereas above pathological phenomena were reversed in IDO1-/- mice. Our data demonstrate that IDO1 affects the process of immune cells recruitment via inhibiting DCs maturation and subsequent T cells proliferation, resulting in the promotion of hepatic fibrosis. Thus, amelioration of immune responses in hepatic and splenic microenvironment by targeting IDO1 might be essential for the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Bin Liu
- Department of Emergency, Guangzhou Red Cross Hospital, Medical College, Jinan University, 510220, Guangzhou, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, 518033, Shenzhen, Guangdong, People's Republic of China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|