1
|
Szabo B. Presynaptic Adrenoceptors. Handb Exp Pharmacol 2024; 285:185-245. [PMID: 38755350 DOI: 10.1007/164_2024_714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Presynaptic α2-adrenoceptors are localized on axon terminals of many noradrenergic and non-noradrenergic neurons in the peripheral and central nervous systems. Their activation by exogenous agonists leads to inhibition of the exocytotic release of noradrenaline and other transmitters from the neurons. Most often, the α2A-receptor subtype is involved in this inhibition. The chain of molecular events between receptor occupation and inhibition of the exocytotic release of transmitters has been determined. Physiologically released endogenous noradrenaline elicits retrograde autoinhibition of its own release. Some clonidine-like α2-receptor agonists have been used to treat hypertension. Dexmedetomidine is used for prolonged sedation in the intensive care; It also has a strong analgesic effect. The α2-receptor antagonist mirtazapine increases the noradrenaline concentration in the synaptic cleft by interrupting physiological autoinhibion of release. It belongs to the most effective antidepressive drugs. β2-Adrenoceptors are also localized on axon terminals in the peripheral and central nervous systems. Their activation leads to enhanced transmitter release, however, they are not activated by endogenous adrenaline.
Collapse
MESH Headings
- Animals
- Humans
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Receptors, Presynaptic/metabolism
- Synaptic Transmission/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
Collapse
Affiliation(s)
- Bela Szabo
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
D’Agostino G, Salvatore S, Calvi P, Condino AM. Inhibition of prejunctional parasympathetic pathways by β 3-adrenoceptor agonists in the isolated pig detrusor: comparison with human detrusor studies. Front Pharmacol 2023; 14:1177653. [PMID: 37234719 PMCID: PMC10206075 DOI: 10.3389/fphar.2023.1177653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adrenergic receptors of the β3-subtype (β3-ADRs) seem to represent a new target for a more effective pharmacological treatment of overactive bladder (OAB), a wide spread urinary disorder. A promising opportunity for OAB therapy might rely on the development of selective β3-ADR agonists, but an appropriate preclinical screening, as well as investigation of their pharmacological mechanism(s), is limited by poor availability of human bladder samples and of translational animal models. In this study, we used the porcine urinary bladder as experimental tool to ascertain the functions of β3-ADRs in the control the parasympathetic motor drive. Tritiated acetylcholine ([3H]-ACh), mainly originated from neural stores, was released by electrical field stimulation (EFS) in epithelium-deprived detrusor strips from pigs bred without estrogens. EFS produced simultaneously [3H]-ACh release and smooth muscle contraction allowing to asses neural (pre-junctional) and myogenic (postjunctional) effects in the same experiment. Isoprenaline and mirabegron produced on the EFS-evoked effects a concentration-dependent inhibition antagonized by L-748,337, a high selective β3-ADR antagonist. The analysis of the resultant pharmacodynamic parameters supports the notion that in pig detrusors, as well as in previously described human detrusors, the activation of inhibitory β3-ADRs can modulate neural parasympathetic pathways. In such inhibitory control, the involvement of membrane K+ channels, mainly of the SK type, seems to play a pivotal role similarly to what previously described in humans. Therefore, the isolated porcine detrusor can provide a suitable experimental tool to study the mechanisms underlying the clinical efficacy of selective β3-ADR compounds for human use.
Collapse
Affiliation(s)
| | - Stefano Salvatore
- Department of Obstetrics and Gynaecology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Calvi
- Cellini Clinic, Humanitas Group, Torino, Italy
| | | |
Collapse
|
3
|
β3 Relaxant Effect in Human Bladder Involves Cystathionine γ-Lyase-Derived Urothelial Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11081480. [PMID: 36009199 PMCID: PMC9405273 DOI: 10.3390/antiox11081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is now well established that the urothelium does not act as a passive barrier but contributes to bladder homeostasis by releasing several signaling molecules in response to physiological and chemical stimuli. Here, we investigated the potential contribution of the hydrogen sulfide (H2S) pathway in regulating human urothelium function in β3 adrenoceptor-mediated relaxation. The relaxant effect of BRL 37344 (0.1–300 µM), a selective β3 adrenoceptor agonist, was evaluated in isolated human bladder strips in the presence or absence of the urothelium. The relaxant effect of BRL 37344 was significantly reduced by urothelium removal. The inhibition of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), significantly reduced the BRL 37344 relaxing effect to the same extent as that given by urothelium removal, suggesting a role for CSE-derived H2S. β3 adrenoceptor stimulation in the human urothelium or in T24 urothelial cells markedly increased H2S and cAMP levels that were reverted by a blockade of CSE and β3 adrenoceptor antagonism. These findings demonstrate a key role for urothelium CSE-derived H2S in the β3 effect on the human bladder through the modulation of cAMP levels. Therefore, the study establishes the relevance of urothelial β3 adrenoceptors in the regulation of bladder tone, supporting the use of β3 agonists in patients affected by an overactive bladder.
Collapse
|
4
|
Lim I, Chess-Williams R. Mirabegron attenuates porcine ureteral contractility via α1-adrenoceptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:839-847. [PMID: 35445849 PMCID: PMC9192402 DOI: 10.1007/s00210-022-02244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The β3-agonist mirabegron is thought to induce relaxation of the detrusor muscle, contributing to the improvement of overactive bladder symptoms. There has been recent interest in purposing mirabegron as a medical expulsive therapy drug to improve the passage of smaller kidney stones by relaxing the ureteral smooth muscles. The aim of this study was to determine the effects of mirabegron on the activity of the ureter. Additionally, we investigated the receptor and mechanisms through which mirabegron exerts these effects. In vitro agonist-induced responses of isolated porcine distal ureteral tissues were measured in the absence and presence of mirabegron in organ bath experiments. The responses were expressed as frequency, area under the curve and maximum amplitude. Mirabegron at concentrations of 100 nM and lower failed to suppress phenylephrine- or 5-HT-induced contractions in the porcine ureteral strip. Mirabegron at 1 μM and 10 μM produced a rightward shift of phenylephrine concentration–response curves in these tissues. This effect of mirabegron (10 μM) was not present in 5-HT concentration–response curves. The mirabegron effect on phenylephrine-induced contractions was also not abolished by β-adrenoceptor antagonist SR 59230A (10 μM), β-adrenoceptor antagonist propranolol (10 μM), α2-adrenoceptor antagonist yohimbine (30 nM), and nitric oxide synthase inhibitor l-NNA (10 μM). The present results show that mirabegron suppresses ureteral contractile responses in the porcine ureter via α1-adrenoceptor antagonism, since their effects were not present when the tissues were contracted with 5-HT. Furthermore, the inhibitory effects by mirabegron were not affected by β3-adrenoceptor antagonists.
Collapse
Affiliation(s)
- Iris Lim
- Centre for Urology Research, Faculty of Health Science & Medicine, Bond University, Robina, QLD, 4229, Australia.
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Science & Medicine, Bond University, Robina, QLD, 4229, Australia
| |
Collapse
|
5
|
Huang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Antagonism of α 1-adrenoceptors by β 3-adrenergic agonists: Structure-function relations of different agonists in prostate smooth muscle contraction. Biochem Pharmacol 2022; 202:115148. [PMID: 35716783 DOI: 10.1016/j.bcp.2022.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Effects of β3-adrenergic agonists on prostate smooth muscle contraction are poorly characterized, although mirabegron is used for treatment of lower urinary tract symptoms. Off-target effects of several β3-adrenergic agonists include antagonism of α1-adrenoceptors. Proposed, but unconfirmed explanations include phenylethanolamine backbones, found in some β3-adrenergic agonists and imparting interaction with catecholamine binding pockets of adrenoceptors. Here, we examined effects of β3-adrenergic agonists on contractions of human prostate tissues, including ZD7114 (without phenylethanolamine moiety), ZD2079 (phenylethanolamine backbone), BRL37344 and CL316243 (chloride-substituted phenylethanolamine deriatives). Prostate tissues were obtained from radical prostatectomy. Contractions by α1-adrenergic agonists and electric field stimulation (EFS) were studied in an organ bath. ZD7114 (10 µM) right-shifted concentration responses curves for α1-adrenergic agonists, resulting in increased EC50 values for phenylephrine, methoxamine and noradrenaline up to one magnitude, without affecting Emax values. ZD7114 (10 µM) inhibited EFS-induced contractions, resulting in reduced Emax values. All effects of ZD7114 were resistant to the β3-adrenergic antagonist L-748337, including increases in EC50 values for α1-adrenergic agonists, up to more than two magnitudes. Using 10 µM, neither ZD2079, BRL37344 or CL316243 affected α1-adrenergic or EFS-induced contractions. At escalated concentrations, BRL37344 (200 µM) right-shifted concentration response curves for phenylephrine, increased EC50 values for phenylephrine, and inhibited EFS-induced contractions, while CL316243 (300 µM) did not affect phenylephrine- or EFS-induced contractions. In conclusion, phenylethanolamine backbones are not decisive to impart α1-adrenoceptor antagonism to β3-agonists. Effects of β3-adrenergic agonists on prostate smooth muscle contraction are limited to off-target effects, including α1-adrenoceptor antagonism by ZD7114 and BRL37344.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Brucker BM, King J, Mudd PN, McHale K. Selectivity and Maximum Response of Vibegron and Mirabegron for β 3-Adrenergic Receptors. CURRENT THERAPEUTIC RESEARCH 2022; 96:100674. [PMID: 35693456 PMCID: PMC9184556 DOI: 10.1016/j.curtheres.2022.100674] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Background The β3-adrenergic agonists vibegron and mirabegron have shown favorable safety profiles and efficacy for the treatment of overactive bladder. However, β-adrenergic receptors are also found outside the bladder, which could lead to off-target activity. Objective This study assessed the selectivity of vibegron and mirabegron for β-adrenergic receptors and the maximal effect and potency for β3-adrenergic receptors. Methods Functional cellular assays were performed using Chinese hamster ovary-K1 cells expressing β1-, Chinese hamster ovary cells expressing β2-, and human embryonic kidney 293 cells expressing β3-adrenergic receptors. Cells were incubated with vibegron, mirabegron, or control (β1 and β3, isoproterenol; β2, procaterol). Responses were quantified using homogeneous time-resolved fluorescence of cyclic adenosine monophosphate and were normalized to the respective control. Half-maximal effective concentration and maximum response values were determined by nonlinear least-squares regression analysis. Results Activation of β3-adrenergic receptors with vibegron or mirabegron resulted in concentration-dependent β3-adrenergic receptor responses. Mean (SEM) half-maximal effective concentration values at β3-adrenergic receptors were 2.13 (0.25) nM for vibegron and 10.0 (0.56) nM for mirabegron. At a concentration of 10 µM, β3-adrenergic activity relative to isoproterenol was 104% for vibegron and 88% for mirabegron. Maximum response at β3-adrenergic receptors was 99.2% for vibegron and 80.4% for mirabegron. β1-adrenergic activity was 0% and 3% for vibegron and mirabegron, respectively; β2-adrenergic activity was 2% and 15%, respectively. Conclusions Vibegron showed no measurable β1 and low β2 activity compared with mirabegron, which showed low β1 and some β2 activity. Both showed considerable selectivity at β3-adrenergic receptors; however, vibegron demonstrated near-exclusive β3 activity and a higher maximum β3 response.
Collapse
Affiliation(s)
- Benjamin M. Brucker
- Departments of Urology and Obstetrics and Gynecology, NYU Langone Health, New York, New York
| | - Jennifer King
- Urovant Sciences, Irvine, California
- Currently at: Cyclerion Therapeutics, Boston, Massachusetts
| | - Paul N. Mudd
- Urovant Sciences, Irvine, California
- Currently at: Priovant Therapeutics, Durham, North Carolina
| | | |
Collapse
|
7
|
Matsuda K, Teruya K, Uemura O. Urodynamic effect of vibegron on neurogenic lower urinary tract dysfunction in individuals with spinal cord injury: A retrospective study. Spinal Cord 2022; 60:716-721. [PMID: 35177800 DOI: 10.1038/s41393-022-00766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A Retrospective study. OBJECTIVES To investigate the effects of vibegron on urodynamic parameters of individuals with spinal cord injury (SCI). SETTING The National Hospital Organization, Murayama Medical Center, Japan. METHODS We retrospectively analyzed the urodynamic parameters of 31 individuals with SCI within one year after injury, who were diagnosed with neurogenic lower urinary tract dysfunction (NLUTD) according to a urodynamic study (UDS), and prescribed vibegron between December 2018 and December 2020. Treatment criteria were as follows: cystometric capacity of <200 mL, bladder compliance of <20 mL/cmH2O, and/or presence of detrusor overactivity in the first UDS. We compared urodynamic data before and after vibegron treatment. RESULTS Vibegron administration increased the maximum cystometric capacity (MCC) (median, from 185.0 to 340.0 mL, P = 0.001), bladder compliance (median, from 8.3 to 20.0 mL/cmH2O, P < 0.001). CONCLUSION Vibegron therapy improved the bladder capacity and bladder compliance of individuals with NLUTD and SCI.
Collapse
Affiliation(s)
- Kyohei Matsuda
- Department of Rehabilitation Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan.,National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Koji Teruya
- Department of Health and welfare, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Osamu Uemura
- National Hospital Organization Murayama Medical Center, Tokyo, Japan.
| |
Collapse
|
8
|
Huang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Inhibition of full smooth muscle contraction in isolated human detrusor tissues by mirabegron is limited to off-target inhibition of neurogenic contractions. J Pharmacol Exp Ther 2022; 381:176-187. [DOI: 10.1124/jpet.121.001029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
|
9
|
Effects of β3-adrenoceptor agonist on acute urinary retention in a rat model. World J Urol 2021; 39:4427-4433. [PMID: 34304275 DOI: 10.1007/s00345-021-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To investigate the protective effect of mirabegron on bladder dysfunction in an acute urinary retention rat model. MATERIALS AND METHODS Thirty-six 16-week Sprague-Dawley rats were assigned to the mirabegron and normal saline (N/S) groups. Each group of eighteen was divided into sub-groups of 6 for 30 min, 2 h, and 24 h. They were administered mirabegron (10 mg/kg) and N/S daily for 4 weeks, respectively. Mirabegron and N/S groups were divided into sub-groups of 6 rats for 30 min, 2 h, and 24 h. The changes in bladder blood flow were measured using laser Doppler (moorVMS-LDF2). Histopathological examination of the bladder and nitric oxide (NO) measurement were performed. RESULT During the urinary retention phase in the mirabegron group, it showed higher and rapider recovery of blood flow; the lowest at 19.5% ± 3.68% at 3 min, a significant recovery from the lowest value as 23.7 ± 3.4% at 10 min, than that in the N/S group; 15.1 ± 1.84% at 5 min, 23.7 ± 3.4% at 20 min, respectively (P < 0.05). At 30 min, 120 min, and 24 h after reperfusion, the recovery of blood flow in the mirabegron group was significantly higher than that in the N/S group (mirabegron: 41.1 ± 1.7%, 59.9 ± 7.2%, and 89.7 ± 4.4%, N/S: 31.3 ± 2.1%, 47.3 ± 4.5%, 83.9 ± 3.6%, respectively (P < 0.05)). NO levels tended to be higher in the mirabegron group; however, the difference was not statistically significant. Histological examination revealed that the mirabegron group showed recovery close to normal tissue after 24 h. CONCLUSIONS In an acute urinary retention rat model, mirabegron maintained and restored higher bladder blood flow, resulting in protective and recovery effect after acute urinary retention.
Collapse
|
10
|
Huang R, Liu Y, Ciotkowska A, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Concentration-dependent alpha 1-Adrenoceptor Antagonism and Inhibition of Neurogenic Smooth Muscle Contraction by Mirabegron in the Human Prostate. Front Pharmacol 2021; 12:666047. [PMID: 34248624 PMCID: PMC8264149 DOI: 10.3389/fphar.2021.666047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Introduction: Mirabegron is available for treatment of storage symptoms in overactive bladder, which may be improved by β3-adrenoceptor-induced bladder smooth muscle relaxation. In addition to storage symptoms, lower urinary tract symptoms in men include obstructive symptoms attributed to benign prostatic hyperplasia, caused by increased prostate smooth muscle tone and prostate enlargement. In contrast to the bladder and storage symptoms, effects of mirabegron on prostate smooth muscle contraction and obstructive symptoms are poorly understood. Evidence from non-human smooth muscle suggested antagonism of α1-adrenoceptors as an important off-target effect of mirabegron. As α1-adrenergic contraction is crucial in pathophysiology and medical treatment of obstructive symptoms, we here examined effects of mirabegron on contractions of human prostate tissues and on proliferation of prostate stromal cells. Methods: Contractions were induced in an organ bath. Effects of mirabegron on proliferation, viability, and cAMP levels in cultured stromal cells were examined by EdU assays, CCK-8 assays and enzyme-linked immunosorbent assay. Results: Mirabegron in concentrations of 5 and 10 μM, but not 1 µM inhibited electric field stimulation-induced contractions of human prostate tissues. Mirabegron in concentrations of 5 and 10 µM shifted concentration response curves for noradrenaline-, methoxamine- and phenylephrine-induced contractions to the right, including recovery of contractions at high concentrations of α1-adrenergic agonists, increased EC50 values, but unchanged Emax values. Rightshifts of noradrenaline concentration response curves and inhibition of EFS-induced contractions were resistant to L-748,337, l-NAME, and BPIPP. 1 µM mirabegron was without effect on α1-adrenergic contractions. Endothelin-1- and U46619-induced contractions were not affected or only inhibited to neglectable extent. Effects of mirabegron (0.5–10 µM) on proliferation and viability of stromal cells were neglectable or small, reaching maximum decreases of 8% in proliferation assays and 17% in viability assays. Mirabegron did not induce detectable increases of cAMP levels in cultured stromal cells. Conclusion: Mirabegron inhibits neurogenic and α1-adrenergic human prostate smooth muscle contractions. This inhibition may be based on antagonism of α1-adrenoceptors by mirabegron, and does not include activation of β3-adrenoceptors and requires concentrations ranging 50-100fold higher than plasma concentrations reported from normal dosing. Non-adrenergic contractions and proliferation of prostate stromal cells are not inhibited by mirabegron.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Fry CH, Chakrabarty B, Hashitani H, Andersson KE, McCloskey K, Jabr RI, Drake MJ. New targets for overactive bladder-ICI-RS 2109. Neurourol Urodyn 2020; 39 Suppl 3:S113-S121. [PMID: 31737931 PMCID: PMC8114459 DOI: 10.1002/nau.24228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
AIM To review evidence for novel drug targets that can manage overactive bladder (OAB) symptoms. METHODS A think tank considered evidence from the literature and their own research experience to propose new drug targets in the urinary bladder to characterize their use to treat OAB. RESULTS Five classes of agents or cellular pathways were considered. (a) Cyclic nucleotide-dependent (cyclic adenosine monophosphate and cyclic guanosine monophosphate) pathways that modulate adenosine triphosphate release from motor nerves and urothelium. (b) Novel targets for β3 agonists, including the bladder wall vasculature and muscularis mucosa. (c) Several TRP channels (TRPV1 , TRPV4 , TRPA1 , and TRPM4 ) and their modulators in affecting detrusor overactivity. (d) Small conductance Ca2+ -activated K+ channels and their influence on spontaneous contractions. (e) Antifibrosis agents that act to modulate directly or indirectly the TGF-β pathway-the canonical fibrosis pathway. CONCLUSIONS The specificity of action remains a consideration if particular classes of agents can be considered for future development as receptors or pathways that mediate actions of the above mentioned potential agents are distributed among most organ systems. The tasks are to determine more detail of the pathological changes that occur in the OAB and how the specificity of potential drugs may be directed to bladder pathological changes. An important conclusion was that the storage, not the voiding, phase in the micturition cycle should be investigated and potential targets lie in the whole range of tissue in the bladder wall and not just detrusor.
Collapse
Affiliation(s)
- Christopher Henry Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Basu Chakrabarty
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Karl-Erik Andersson
- Institute of Laboratory Medicine, Lund University, Lund, Sweden
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Karen McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Rita I. Jabr
- Division of Biochemical Sciences, Faculty of Health and Biomedical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
12
|
Silva I, Magalhães-Cardoso MT, Ferreirinha F, Moreira S, Costa AF, Silva D, Vieira C, Silva-Ramos M, Correia-de-Sá P. β 3 Adrenoceptor-induced cholinergic inhibition in human and rat urinary bladders involves the exchange protein directly activated by cyclic AMP 1 favoring adenosine release. Br J Pharmacol 2020; 177:1589-1608. [PMID: 31721163 DOI: 10.1111/bph.14921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The mechanism by which β3 receptor agonists (e.g. mirabegron) control bladder overactivity may involve adenosine release from human and rat detrusor smooth muscle. Retrograde activation of adenosine A1 receptors reduces ACh release from cholinergic bladder nerves. β3 -Adrenoceptors usually couple to adenylyl cyclase. Here we investigated, which of the cAMP targets, protein kinase A or the exchange protein directly activated by cAMP (EPAC) could be involved in this cholinergic inhibition of the bladder. EXPERIMENTAL APPROACH [3 H]ACh and adenosine release from urothelium-denuded detrusor strips of cadaveric human organ donors and rats were measured by liquid scintillation spectrometry and HPLC, respectively. In vivo cystometry was also performed in urethane-anaesthetized rats. KEY RESULTS The exchange protein directly activated by cAMP (EPAC) inhibitor, ESI-09, prevented mirabegron- and isoprenaline-induced adenosine release from human and rat detrusor strips respectively. ESI-09, but not the PKA inhibitor, H-89, attenuated inhibition of [3 H]ACh release from stimulated (10 Hz) detrusor strips caused by activating β3 -adrenoceptors, AC (forskolin) and EPAC1 (8-CTP-2Me-cAMP). Isoprenaline-induced inhibition of [3 H]ACh release was also prevented by inhibitors of PKC (chelerythrine and Go6976) and of the equilibrative nucleoside transporter 1 (ENT1; dipyridamole and NBTI), but not by PLC inhibition with U73122. Pretreatment with ESI-09, but not with H-89, prevented the reduction of the voiding frequency caused by isoprenaline and forskolin in vivo. CONCLUSION AND IMPLICATIONS Data suggest that β3 -adrenoceptor-induced inhibition of cholinergic neurotransmission in human and rat urinary bladders involves activation of an EPAC1/PKC pathway downstream cAMP production resulting in adenosine outflow via ENT1.
Collapse
Affiliation(s)
- Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - M Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sílvia Moreira
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Filipa Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Diogo Silva
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Fong Z, Griffin CS, Hollywood MA, Thornbury KD, Sergeant GP. β 3-Adrenoceptor agonists inhibit purinergic receptor-mediated contractions of the murine detrusor. Am J Physiol Cell Physiol 2019; 317:C131-C142. [PMID: 31042424 DOI: 10.1152/ajpcell.00488.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β3-Adrenoceptor (β3-AR) agonists are used to treat overactive bladder syndrome; however, their mechanism of action has not been determined. The aims of this study were to compare the effects of β3-AR agonists on cholinergic versus purinergic receptor-mediated contractions of the detrusor and to examine the mechanisms underlying inhibition of the purinergic responses by β3-AR agonists. Isometric tension recordings were made from strips of murine detrusor and whole cell current recordings were made from freshly isolated detrusor myocytes using the patch-clamp technique. Transcriptional expression of exchange protein directly activated by cAMP (EPAC) subtypes in detrusor strips was assessed using RT-PCR and real-time quantitative PCR. The β3-AR agonists BRL37344 and CL316243 (100 nM) inhibited cholinergic nerve-mediated contractions of the detrusor by 19 and 23%, respectively, but did not reduce contractions induced by the cholinergic agonist carbachol (300 nM). In contrast, BRL37344 and CL316243 inhibited purinergic nerve-mediated responses by 55 and 56%, respectively, and decreased the amplitude of contractions induced by the P2X receptor agonist α,β-methylene ATP by 40 and 45%, respectively. The adenylate cyclase activator forskolin inhibited purinergic responses, and these effects were mimicked by a combination of the PKA activator N6-monobutyryl-cAMP and the EPAC activator 8-pCPT-2'-O-methyl-cAMP-AM (007-AM). Application of ATP (1 μM) evoked reproducible P2X currents in isolated detrusor myocytes voltage-clamped at -60 mV. These responses were reduced in amplitude in the presence of BRL37344 and also by 007-AM. This study demonstrates that β3-AR agonists reduce postjunctional purinergic responses in the detrusor via a pathway involving activation of the cAMP effector EPAC.
Collapse
Affiliation(s)
- Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Caoimhín S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
14
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|