1
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Marques Dracxler C, Kissling WD. The mutualism-antagonism continuum in Neotropical palm-frugivore interactions: from interaction outcomes to ecosystem dynamics. Biol Rev Camb Philos Soc 2021; 97:527-553. [PMID: 34725900 PMCID: PMC9297963 DOI: 10.1111/brv.12809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Frugivory, that is feeding on fruits, pulp or seeds by animals, is usually considered a mutualism when interactions involve seed dispersal, and an antagonism when it results in the predation and destruction of seeds. Nevertheless, most frugivory interactions involve both benefits and disadvantages for plants, and the net interaction outcomes thus tend to vary along a continuum from mutualism to antagonism. Quantifying outcome variation is challenging and the ecological contribution of frugivorous animals to plant demography thus remains little explored. This is particularly true for interactions in which animals do not ingest entire fruits, that is in seed‐eating and pulp‐eating. Here, we provide a comprehensive review of Neotropical palm–frugivore interactions, with a focus on how frugivore consumption behaviour (i.e. digestive processing, fruit‐handling ability and caching behaviour) and feeding types (fruit‐eating, pulp‐eating and seed‐eating) influence interaction outcomes at different demographic stages of palms. We compiled a total of 1043 species‐level palm–frugivore interaction records that explicitly captured information on which parts of palm fruits are eaten by animals. These records showed consumption of fruits of 106 Neotropical palm species by 273 vertebrate species, especially birds (50%) and mammals (45%), but also fish (3%) and reptiles (2%). Fruit‐eating involved all four taxonomic vertebrate classes whereas seed‐eating and pulp‐eating were only recorded among birds and mammals. Most fruit‐eating interactions (77%) resulted in positive interaction outcomes for plants (e.g. gut‐passed seeds are viable or seeds are successfully dispersed), regardless of the digestive processing type of vertebrate consumers (seed defecation versus regurgitation). The majority of pulp‐eating interactions (91%) also resulted in positive interaction outcomes, for instance via pulp removal that promoted seed germination or via dispersal of intact palm seeds by external transport, especially if animals have a good fruit‐handling ability (e.g. primates, and some parrots). By contrast, seed‐eating interactions mostly resulted in dual outcomes (60%), where interactions had both negative effects on seed survival and positive outcomes through seed caching and external (non‐digestive) seed dispersal. A detailed synthesis of available field studies with qualitative and quantitative information provided evidence that 12 families and 27 species of mammals and birds are predominantly on the mutualistic side of the continuum whereas five mammalian families, six mammal and one reptile species are on the antagonistic side. The synthesis also revealed that most species can act as partial mutualists, even if they are typically considered antagonists. Our review demonstrates how different consumption behaviours and feeding types of vertebrate fruit consumers can influence seed dispersal and regeneration of palms, and thus ultimately affect the structure and functioning of tropical ecosystems. Variation in feeding types of animal consumers will influence ecosystem dynamics via effects on plant population dynamics and differences in long‐distance seed dispersal, and may subsequently affect ecosystem functions such as carbon storage. The quantification of intra‐ and inter‐specific variation in outcomes of plant–frugivore interactions – and their positive and negative effects on the seed‐to‐seedling transition of animal‐dispersed plants – should be a key research focus to understand better the mutualism–antagonism continuum and its importance for ecosystem dynamics.
Collapse
Affiliation(s)
- Caroline Marques Dracxler
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| |
Collapse
|
3
|
Effects of environmental factors on the behaviour and nest group sizes of Smith's bush squirrels, Paraxerus cepapi, in a Zambezian bioregion. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe responses of wildlife to environmental factors are of conservation importance. However, the absence of relevant information due to inadequate studies, and lack of understanding of the influences of environmental factors on wildlife, particularly in the Zambezian bioregion, remain a conservation concern. For instance, there is a shortage of knowledge on the relationship between fixed effects of environmental factors and behaviour as well as nest group sizes of Smith’s bush squirrels, Paraxerus cepapi Smith, 1836. Our study examined the relationship between fixed effects of several environmental factors (i.e., with focus on ecological factors) and the behaviour as well as nest group sizes of the bush squirrels in and around Zambia’s Chembe Bird Sanctuary (CBS). Flight initiation distances (FIDs) as an index of bush squirrel behaviour, and nest group sizes were simultaneously surveyed to understand the drivers of biological and population responses, respectively. The results revealed that higher tree height (m) and larger canopy coverage (%) could increase FIDs for bush squirrels. The nest group sizes of bush squirrels could also increase with canopy coverage (%) and presence of termite mounds. By focusing on the two different squirrels' responses, the results of this study highlight the most important environmental factors to consider in minimizing the impacts of human activities on bush squirrels, especially in conservation planning and management by taking into consideration the bush squirrels’ natural history, habitat protection and safe distance between humans and bush squirrels.
Collapse
|
4
|
Benchimol M, Peres CA. Determinants of population persistence and abundance of terrestrial and arboreal vertebrates stranded in tropical forest land-bridge islands. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:870-883. [PMID: 32852065 DOI: 10.1111/cobi.13619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.
Collapse
Affiliation(s)
- Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação (LEAC), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45650-000, Brazil
- Center for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, U.K
| | - Carlos A Peres
- Center for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, U.K
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Campus I - Lot. Cidade Universitaria, João Pessoa, PB, 58051-900, Brazil
| |
Collapse
|
5
|
|
6
|
Valverde J, Carvalho CDS, Jordano P, Galetti M. Large herbivores regulate the spatial recruitment of a hyperdominant Neotropical palm. Biotropica 2020. [DOI: 10.1111/btp.12873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Valverde
- CIBIO‐InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- Departamento de Ecología Universidad de Granada Granada Spain
| | - Carolina da Silva Carvalho
- Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
- Departamento de Genética e Evolução Universidade Federal de São Carlos (UFSCar) São Carlos Brazil
| | - Pedro Jordano
- Integrative Ecology Group Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (EBD‐CSIC) Sevilla Spain
| | - Mauro Galetti
- Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
- Department of Biology University of Miami Coral Gables FL USA
| |
Collapse
|
7
|
Menéndez I, Gómez Cano AR, Cantalapiedra JL, Peláez‐Campomanes P, Álvarez‐Sierra MÁ, Hernández Fernández M. A multi‐layered approach to the diversification of squirrels. Mamm Rev 2020. [DOI: 10.1111/mam.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Iris Menéndez
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas Universidad Complutense de Madrid C/ José Antonio Novais 12 Madrid28040 Spain
- Departamento de Cambio Medioambiental Instituto de Geociencias (UCM, CSIC) C/Severo Ochoa 7 Madrid28040 Spain
| | | | - Juan L. Cantalapiedra
- Departamento de Ciencias de la Vida, GloCEE Global Change Ecology and Evolution Research Group Universidad de Alcalá Plaza de San Diego s/n, Alcalá de Henares Madrid28801 Spain
| | - Pablo Peláez‐Campomanes
- Departameto de Paleobiología Museo Nacional de Ciencias Naturales, MNCN‐CSIC C/ José Gutiérrez Abascal, 2 Madrid28006 Spain
| | - María Ángeles Álvarez‐Sierra
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas Universidad Complutense de Madrid C/ José Antonio Novais 12 Madrid28040 Spain
- Departamento de Cambio Medioambiental Instituto de Geociencias (UCM, CSIC) C/Severo Ochoa 7 Madrid28040 Spain
| | - Manuel Hernández Fernández
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas Universidad Complutense de Madrid C/ José Antonio Novais 12 Madrid28040 Spain
- Departamento de Cambio Medioambiental Instituto de Geociencias (UCM, CSIC) C/Severo Ochoa 7 Madrid28040 Spain
| |
Collapse
|
8
|
de Abreu-Jr EF, Pavan SE, Tsuchiya MTN, Wilson DE, Percequillo AR, Maldonado JE. Museomics of tree squirrels: a dense taxon sampling of mitogenomes reveals hidden diversity, phenotypic convergence, and the need of a taxonomic overhaul. BMC Evol Biol 2020; 20:77. [PMID: 32590930 PMCID: PMC7320592 DOI: 10.1186/s12862-020-01639-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tree squirrels (Sciuridae, Sciurini), in particular the highly diverse Neotropical lineages, are amongst the most rapidly diversifying branches of the mammal tree of life but also some of the least known. Negligence of this group by systematists is likely a product of the difficulties in assessing morphological informative traits and of the scarcity or unavailability of fresh tissue samples for DNA sequencing. The highly discrepant taxonomic arrangements are a consequence of the lack of phylogenies and the exclusive phenotypic-based classifications, which can be misleading in a group with conservative morphology. Here we used high-throughput sequencing and an unprecedented sampling of museum specimens to provide the first comprehensive phylogeny of tree squirrels, with a special emphasis on Neotropical taxa. RESULTS We obtained complete or partial mitochondrial genomes from 232 historical and modern samples, representing 40 of the 43 currently recognized species of Sciurini. Our phylogenetic analyses-performed with datasets differing on levels of missing data and taxa under distinct analytical methods-strongly support the monophyly of Sciurini and consistently recovered 12 major clades within the tribe. We found evidence that the diversity of Neotropical tree squirrels is underestimated, with at least six lineages that represent taxa to be named or revalidated. Ancestral state reconstructions of number of upper premolars and number of mammae indicated that alternative conditions of both characters must have evolved multiple times throughout the evolutionary history of tree squirrels. CONCLUSIONS Complete mitogenomes were obtained from museum specimens as old as 120 years, reinforcing the potential of historical samples for phylogenetic inferences of elusive lineages of the tree of life. None of the taxonomic arrangements ever proposed for tree squirrels fully corresponded to our phylogenetic reconstruction, with only a few of the currently recognized genera recovered as monophyletic. By investigating the evolution of two morphological traits widely employed in the taxonomy of the group, we revealed that their homoplastic nature can help explain the incongruence between phylogenetic results and the classification schemes presented so far. Based on our phylogenetic results we suggest a tentative supraspecific taxonomic arrangement for Sciurini, employing 13 generic names used in previous taxonomic classifications.
Collapse
Affiliation(s)
- Edson Fiedler de Abreu-Jr
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418900, Brazil.
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA.
| | - Silvia E Pavan
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA.
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, PA, 66077530, Brazil.
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, 20560, USA
| | - Don E Wilson
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Alexandre R Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418900, Brazil
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20013, USA
- Department of Biology and Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
9
|
Nascimento LFD, Guimarães PR, Onstein RE, Kissling WD, Pires MM. Associated evolution of fruit size, fruit colour and spines in Neotropical palms. J Evol Biol 2020; 33:858-868. [PMID: 32198956 DOI: 10.1111/jeb.13619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
Understanding how ecological interactions have shaped the evolutionary dynamics of species traits remains a challenge in evolutionary ecology. Combining trait evolution models and phylogenies, we analysed the evolution of characters associated with seed dispersal (fruit size and colour) and herbivory (spines) in Neotropical palms to infer the role of these opposing animal-plant interactions in driving evolutionary patterns. We found that the evolution of fruit colour and fruit size was associated in Neotropical palms, supporting the adaptive interpretation of seed-dispersal syndromes and highlighting the role of frugivores in shaping plant evolution. Furthermore, we revealed a positive association between fruit size and the presence of spines on palm leaves, bracteas and stems. We hypothesize that interactions between palms and large-bodied frugivores/herbivores may explain the evolutionary relationship between fruit size and spines. Large-bodied frugivores, such as extinct megafauna, besides consuming the fruits and dispersing large seeds, may also have consumed the leaves or damaged the plants, thus simultaneously favouring the evolution of large fruits and defensive structures. Our findings show how current trait patterns can be understood as the result of the interplay between antagonistic and mutualistic interactions that have happened throughout the evolutionary history of a clade.
Collapse
Affiliation(s)
| | - Paulo R Guimarães
- Departamento de Ecologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Renske E Onstein
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
10
|
Mori E, Sangiovanni G, Corlatti L. Gimme shelter: The effect of rocks and moonlight on occupancy and activity pattern of an endangered rodent, the garden dormouse Eliomys quercinus. Behav Processes 2019; 170:103999. [PMID: 31730883 DOI: 10.1016/j.beproc.2019.103999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Information on spatial behaviour and temporal activity patterns is paramount for the conservation of animal species. This is particularly true for endangered taxa that are threatened by ongoing climatic and environmental changes. The garden dormouse Eliomys quercinus is a native European rodent (family Gliridae), whose populations are declining throughout the Continent. Notwithstanding this, neither International nor National laws explicitly require mandatory monitoring of populations. As a result, compelling information on the spatiotemporal behaviour of dormouse is lacking. We aimed to fill this gap by investigating occupancy patterns in relation to environmental features and activity rhythms in relation to moonlit nights in an Alpine population of dormouse within the Stelvio National Park, northern Italy. Data were collected between May and October 2015. Twenty camera-traps were deployed in a 500 ha coniferous forest, using a random tessellation approach; camera trap data were analyzed with occupancy models and kernel smoothers. Camera-traps provided a reliable assessment of the presence of the garden dormouse, with only 1 % of false absence and a high detection probability (68 %). The occurrence of the garden dormouse was positively influenced by the percentage of rock coverage on the ground. The species showed a strictly nocturnal behaviour, with an activity peak before midnight, negatively related to moonlit nights. The use of rocky areas for nesting, shelter site and thigmotactic movements and moonlight avoidance may represent adaptations of the garden dormouse to avoid predation risk. Our results shed some light on the habitat requirement of a poorly known, near-threatened species, and provide baseline information for future monitoring and conservation activities.
Collapse
Affiliation(s)
- Emiliano Mori
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Giada Sangiovanni
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; Dipartimento di Scienze Matematiche, Fisiche e Naturali, Università degli Studi di Firenze, Viale Morgagni, 40/44, 50134 Firenze, Italy
| | - Luca Corlatti
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany; Stelvio National Park, Via De Simoni 42, 23032 Bormio, Italy
| |
Collapse
|