1
|
Belman S, Pesonen H, Croucher NJ, Bentley SD, Corander J. Estimating between-country migration in pneumococcal populations. G3 (BETHESDA, MD.) 2024; 14:jkae058. [PMID: 38507601 PMCID: PMC11152062 DOI: 10.1093/g3journal/jkae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a globally distributed, human obligate opportunistic bacterial pathogen which, although often carried commensally, is also a significant cause of invasive disease. Apart from multi-drug resistant and virulent clones, the rate and direction of pneumococcal dissemination between different countries remains largely unknown. The ability for the pneumococcus to take a foothold in a country depends on existing population configuration, the extent of vaccine implementation, as well as human mobility since it is a human obligate bacterium. To shed light on its international movement, we used extensive genome data from the Global Pneumococcal Sequencing project and estimated migration parameters between multiple countries in Africa. Data on allele frequencies of polymorphisms at housekeeping-like loci for multiple different lineages circulating in the populations of South Africa, Malawi, Kenya, and The Gambia were used to calculate the fixation index (Fst) between countries. We then further used these summaries to fit migration coalescent models with the likelihood-free inference algorithms available in the ELFI software package. Synthetic datawere additionally used to validate the inference approach. Our results demonstrate country-pair specific migration patterns and heterogeneity in the extent of migration between different lineages. Our approach demonstrates that coalescent models can be effectively used for inferring migration rates for bacterial species and lineages provided sufficiently granular population genomics surveillance data. Further, it can demonstrate the connectivity of respiratory disease agents between countries to inform intervention policy in the longer term.
Collapse
Affiliation(s)
- Sophie Belman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Henri Pesonen
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, 0372, Norway
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, 0372, Norway
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Espoo, Helsinki, 02150, Finland
| |
Collapse
|
2
|
Luqman H, Widmer A, Fior S, Wegmann D. Identifying loci under selection via explicit demographic models. Mol Ecol Resour 2021; 21:2719-2737. [PMID: 33964107 PMCID: PMC8596768 DOI: 10.1111/1755-0998.13415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 01/28/2023]
Abstract
Adaptive genetic variation is a function of both selective and neutral forces. To accurately identify adaptive loci, it is thus critical to account for demographic history. Theory suggests that signatures of selection can be inferred using the coalescent, following the premise that genealogies of selected loci deviate from neutral expectations. Here, we build on this theory to develop an analytical framework to identify loci under selection via explicit demographic models (LSD). Under this framework, signatures of selection are inferred through deviations in demographic parameters, rather than through summary statistics directly, and demographic history is accounted for explicitly. Leveraging the property of demographic models to incorporate directionality, we show that LSD can provide information on the environment in which selection acts on a population. This can prove useful in elucidating the selective processes underlying local adaptation, by characterizing genetic trade-offs and extending the concepts of antagonistic pleiotropy and conditional neutrality from ecological theory to practical application in genomic data. We implement LSD via approximate Bayesian computation and demonstrate, via simulations, that LSD (a) has high power to identify selected loci across a large range of demographic-selection regimes, (b) outperforms commonly applied genome-scan methods under complex demographies and (c) accurately infers the directionality of selection for identified candidates. Using the same simulations, we further characterize the behaviour of isolation-with-migration models conducive to the study of local adaptation under regimes of selection. Finally, we demonstrate an application of LSD by detecting loci and characterizing genetic trade-offs underlying flower colour in Antirrhinum majus.
Collapse
Affiliation(s)
- Hirzi Luqman
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| |
Collapse
|
3
|
Leigh DM, Lischer HEL, Guillaume F, Grossen C, Günther T. Disentangling adaptation from drift in bottlenecked and reintroduced populations of Alpine ibex. Mol Ecol Resour 2021; 21:2350-2363. [PMID: 34097819 PMCID: PMC8518545 DOI: 10.1111/1755-0998.13442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
Identifying local adaptation in bottlenecked species is essential for conservation management. Selection detection methods have an important role in species management plans, assessments of adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes exploited in selection detection methods are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods have across bottlenecked populations. In this study, simulations were used to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously recorded demographic history of the Alpine ibex was used to generate comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in outliers identified in empirical Alpine ibex RADseq derived SNP data. Within the simulated data set, the false positive rates were high for all selection detection methods (FST outlier scans and Genetic‐Environment Association analyses) but fell substantially when two or more methods were combined. True positive rates were consistently low and became negligible with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, none could be distinguished from genetic drift‐driven false positives. Unfortunately, the low true positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The baselines and stringent approach outlined here should be applied to other bottlenecked species to ensure the risk of false positive, or negative, signals of selection are accounted for in conservation management plans.
Collapse
Affiliation(s)
- Deborah M Leigh
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Heidi E L Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat Commun 2020; 11:1001. [PMID: 32081890 PMCID: PMC7035315 DOI: 10.1038/s41467-020-14803-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human activity has caused dramatic population declines in many wild species. The resulting bottlenecks have a profound impact on the genetic makeup of a species with unknown consequences for health. A key genetic factor for species survival is the evolution of deleterious mutation load, but how bottleneck strength and mutation load interact lacks empirical evidence. We analyze 60 complete genomes of six ibex species and the domestic goat. We show that historic bottlenecks rather than the current conservation status predict levels of genome-wide variation. By analyzing the exceptionally well-characterized population bottlenecks of the once nearly extinct Alpine ibex, we find genomic evidence of concurrent purging of highly deleterious mutations but accumulation of mildly deleterious mutations. This suggests that recolonization bottlenecks induced both relaxed selection and purging, thus reshaping the landscape of deleterious mutation load. Our findings highlight that even populations of ~1000 individuals can accumulate mildly deleterious mutations. Conservation efforts should focus on preventing population declines below such levels to ensure long-term survival of species. Although there is extensive theory predicting the effects of population bottlenecks on mutation load, there is little empirical evidence from recent bottlenecks. Here, Grossen et al. compare the consequences of population bottlenecks in six ibex species for genome-wide variation and mutation load.
Collapse
|
5
|
Zinger T, Gelbart M, Miller D, Pennings PS, Stern A. Inferring population genetics parameters of evolving viruses using time-series data. Virus Evol 2019; 5:vez011. [PMID: 31191979 PMCID: PMC6555871 DOI: 10.1093/ve/vez011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing detail. Here, we present Flexible Inference from Time-Series (FITS)-a computational tool that allows inference of one of three parameters: the fitness of a specific mutation, the mutation rate or the population size from genomic time-series sequencing data. FITS was designed first and foremost for analysis of either short-term Evolve & Resequence (E&R) experiments or rapidly recombining populations of viruses. We thoroughly explore the performance of FITS on simulated data and highlight its ability to infer the fitness/mutation rate/population size. We further show that FITS can infer meaningful information even when the input parameters are inexact. In particular, FITS is able to successfully categorize a mutation as advantageous or deleterious. We next apply FITS to empirical data from an E&R experiment on poliovirus where parameters were determined experimentally and demonstrate high accuracy in inference.
Collapse
Affiliation(s)
- Tal Zinger
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Haim Levanon Str., Tel-Aviv University, Tel-Aviv, Israel
| | - Maoz Gelbart
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Haim Levanon Str., Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Miller
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Haim Levanon Str., Tel-Aviv University, Tel-Aviv, Israel
| | - Pleuni S Pennings
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, USA
| | - Adi Stern
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Haim Levanon Str., Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J, Besnard A, Bernatchez L. Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Mol Ecol 2018; 27:3976-4010. [DOI: 10.1111/mec.14848] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada
| | - Jérôme G. Prunier
- Station d'Ecologie Théorique et Expérimentale; Unité Mixte de Recherche (UMR) 5321; Centre National de la Recherche Scientifique (CNRS); Université Paul Sabatier (UPS); Moulis France
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale; Unité Mixte de Recherche (UMR) 5321; Centre National de la Recherche Scientifique (CNRS); Université Paul Sabatier (UPS); Moulis France
| | - Aurélien Besnard
- CNRS; PSL Research University; EPHE; UM, SupAgro, IRD; INRA; UMR 5175 CEFE; Montpellier France
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada
| |
Collapse
|
7
|
Zieliński P, Nadachowska-Brzyska K, Dudek K, Babik W. Divergence history of the Carpathian and smooth newts modelled in space and time. Mol Ecol 2016; 25:3912-28. [PMID: 27288862 DOI: 10.1111/mec.13724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
Information about demographic history is essential for the understanding of the processes of divergence and speciation. Patterns of genetic variation within and between closely related species provide insights into the history of their interactions. Here, we investigated historical demography and genetic exchange between the Carpathian (Lissotriton montandoni, Lm) and smooth (L. vulgaris, Lv) newts. We combine an extensive geographical sampling and multilocus nuclear sequence data with the approximate Bayesian computation framework to test alternative scenarios of divergence and reconstruct the temporal and spatial pattern of gene flow between species. A model of recent (last glacial period) interspecific gene flow was favoured over alternative models. Thus, despite the relatively old divergence (4-6 mya) and presumably long periods of isolation, the species have retained the ability to exchange genes. Nevertheless, the low migration rates (ca. 10(-6) per gene copy per generation) are consistent with strong reproductive isolation between the species. Models allowing demographic changes were favoured, suggesting that the effective population sizes of both species at least doubled as divergence reaching the current ca. 0.2 million in Lm and 1 million in Lv. We found asymmetry in rates of interspecific gene flow between Lm and one evolutionary lineage of Lv. We suggest that intraspecific polymorphism for hybrid incompatibilities segregating within Lv could explain this pattern and propose further tests to distinguish between alternative explanations. Our study highlights the importance of incorporating intraspecific genetic structure into the models investigating the history of divergence.
Collapse
Affiliation(s)
- P Zieliński
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - K Nadachowska-Brzyska
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - K Dudek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - W Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
8
|
Kousathanas A, Leuenberger C, Helfer J, Quinodoz M, Foll M, Wegmann D. Likelihood-Free Inference in High-Dimensional Models. Genetics 2016; 203:893-904. [PMID: 27052569 PMCID: PMC4896201 DOI: 10.1534/genetics.116.187567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Methods that bypass analytical evaluations of the likelihood function have become an indispensable tool for statistical inference in many fields of science. These so-called likelihood-free methods rely on accepting and rejecting simulations based on summary statistics, which limits them to low-dimensional models for which the value of the likelihood is large enough to result in manageable acceptance rates. To get around these issues, we introduce a novel, likelihood-free Markov chain Monte Carlo (MCMC) method combining two key innovations: updating only one parameter per iteration and accepting or rejecting this update based on subsets of statistics approximately sufficient for this parameter. This increases acceptance rates dramatically, rendering this approach suitable even for models of very high dimensionality. We further derive that for linear models, a one-dimensional combination of statistics per parameter is sufficient and can be found empirically with simulations. Finally, we demonstrate that our method readily scales to models of very high dimensionality, using toy models as well as by jointly inferring the effective population size, the distribution of fitness effects (DFE) of segregating mutations, and selection coefficients for each locus from data of a recent experiment on the evolution of drug resistance in influenza.
Collapse
Affiliation(s)
- Athanasios Kousathanas
- Department of Biology and Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland
| | | | - Jonas Helfer
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge Massachusetts 02139
| | - Mathieu Quinodoz
- Department of Computational Biology, University of Lausanne, 1200 Lausanne, Switzerland
| | - Matthieu Foll
- International Agency for Research on Cancer, 69372 Lyon, France
| | - Daniel Wegmann
- Department of Biology and Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Habel JC, Zachos FE, Dapporto L, Rödder D, Radespiel U, Tellier A, Schmitt T. Population genetics revisited - towards a multidisciplinary research field. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jan Christian Habel
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technische Universität München; D-85354 Freising-Weihenstephan Germany
| | | | - Leonardo Dapporto
- Department of Biological and Medical Sciences; Oxford Brookes University; Headington Oxford OX3 0BP UK
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig; D-53113 Bonn Germany
| | - Ute Radespiel
- Institute of Zoology; University of Veterinary Medicine Hannover; D-30559 Hannover Germany
| | - Aurélien Tellier
- Section of Population Genetics; Technische Universität München; D-85354 Freising Germany
| | - Thomas Schmitt
- Senckenberg German Entomological Institute; D-15374 Müncheberg Germany
- Department of Zoology; Institute of Biology; Faculty of Natural Sciences I; Martin-Luther-University Halle-Wittenberg; D-06099 Halle (Saale) Germany
| |
Collapse
|
10
|
Tison JL, Edmark VN, Sandoval-Castellanos E, Van Dyck H, Tammaru T, Välimäki P, Dalén L, Gotthard K. Signature of post-glacial expansion and genetic structure at the northern range limit of the speckled wood butterfly. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Luc Tison
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; 106 91 Stockholm Sweden
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; SE-10405 Stockholm Sweden
| | - Veronica Nyström Edmark
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; SE-10405 Stockholm Sweden
| | - Edson Sandoval-Castellanos
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; SE-10405 Stockholm Sweden
- Department of Zoology; Stockholm University; SE-106 91 Stockholm Sweden
| | - Hans Van Dyck
- Behavioural Ecology and Conservation Group; Biodiversity Research Centre; Earth and Life Institute; Université Catholique de Louvain (UCL); Croix du Sud 4-5, bte. L7.07.04 1348 Louvain-la-Neuve Belgium
| | - Toomas Tammaru
- Department of Zoology; Institute of Ecology and Earth Sciences; University of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| | - Panu Välimäki
- Department of Biology; University of Oulu; P.O. Box 3000 FI-90014 Oulu Finland
| | - Love Dalén
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; SE-10405 Stockholm Sweden
| | - Karl Gotthard
- Department of Zoology; Stockholm University; SE-106 91 Stockholm Sweden
| |
Collapse
|
11
|
Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaría L. Space, time and complexity in plant dispersal ecology. MOVEMENT ECOLOGY 2014; 2:16. [PMID: 25709828 PMCID: PMC4337469 DOI: 10.1186/s40462-014-0016-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/24/2014] [Indexed: 05/09/2023]
Abstract
Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological and evolutionary consequences. Interest in plant dispersal has increased with concerns about the persistence of populations and species under global change. We argue here that advances in plant dispersal ecology research will be determined by our ability to surmount challenges of spatiotemporal scales and heterogeneities and ecosystem complexity. Based on this framework, we propose a selected set of research questions, for which we suggest some specific objectives and methodological approaches. Reviewed topics include multiple vector contributions to plant dispersal, landscape-dependent dispersal patterns, long-distance dispersal events, spatiotemporal variation in dispersal, and the consequences of dispersal for plant communities, populations under climate change, and anthropogenic landscapes.
Collapse
Affiliation(s)
- Juan J Robledo-Arnuncio
- />Department of Forest Ecology & Genetics, INIA-CIFOR, Ctra. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Etienne K Klein
- />INRA, UR546 Biostatistique et Processus Spatiaux (BioSP), Avignon, France
| | - Helene C Muller-Landau
- />Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Panamá, Republica de Panamá
| | - Luis Santamaría
- />Spatial Ecology Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain
| |
Collapse
|