1
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Yoo N, Yoon JD, Yoo J, Kim KY, Heo JS, Kim KS. Development of molecular identification methods for Dryophytes suweonensis and D. japonicus, and their hybrids. PeerJ 2024; 12:e16728. [PMID: 38259669 PMCID: PMC10802155 DOI: 10.7717/peerj.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background As hybridization can reduce biodiversity or cause extinction, it is important to identify both purebred parental species and their hybrids prior to conserving them. The Suwon tree frog, Dryophytes suweonensis, is an endangered wildlife species in Korea that shares its habitat and often hybridizes with the Japanese tree frog, D. japonicus. In particular, D. suweonensis, D. japonicus, and their hybrids often have abnormal ovaries and gonads, which are known causes that could threaten their existence. Methods We collected 57 individuals from six localities where D. suweonensis is known to be present. High-resolution melting curve (HRM) analysis of the mitochondrial 12S ribosomal RNA gene was performed to determine the maternal species. Thereafter, the DNA sequences of five nuclear genes (SIAH, TYR, POMC, RAG1, and C-MYC) were analyzed to determine their parental species and hybrid status. Results The HRM analysis showed that the melting temperature of D. suweonensis was in the range of 79.0-79.3 °C, and that of D. japonicus was 77.7-78.0 °C, which clearly distinguished the two tree frog species. DNA sequencing of the five nuclear genes revealed 37 single-nucleotide polymorphism (SNP) sites, and STRUCTURE analysis showed a two-group structure as the most likely grouping solution. No heterozygous position in the purebred parental sequences with Q values ≥ 0.995 were found, which clearly distinguished the two treefrog species from their hybrids; 11 individuals were found to be D. suweonensis, eight were found to be D. japonicus, and the remaining 38 individuals were found to be hybrids. Conclusion Thus, it was possible to unambiguously identify the parental species and their hybrids using HRM analysis and DNA sequencing methods. This study provided fundamental information for D. suweonensis conservation and restoration research.
Collapse
Affiliation(s)
- Nakyung Yoo
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Ju-Duk Yoon
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Jeongwoo Yoo
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, Republic of Korea
| | - Jung Soo Heo
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, Republic of Korea
| | - Keun-Sik Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| |
Collapse
|
3
|
Rudin-Bitterli TS, Evans JP, Mitchell NJ. Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs. Commun Biol 2021; 4:1195. [PMID: 34663885 PMCID: PMC8523558 DOI: 10.1038/s42003-021-02695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Targeted gene flow (TGF) could bolster the adaptive potential of isolated populations threatened by climate change, but could also lead to outbreeding depression. Here, we explore these possibilities by creating mixed- and within-population crosses in a terrestrial-breeding frog species threatened by a drying climate. We reared embryos of the crawling frog (Pseudophryne guentheri) on wet and dry soils and quantified fitness-related traits upon hatching. TGF produced mixed outcomes in hybrids, which depended on crossing direction (origin of gametes from each sex). North-south crosses led to low embryonic survival if eggs were of a southern origin, and high malformation rates when eggs were from a northern population. Conversely, east-west crosses led to one instance of hybrid vigour, evident by increased fitness and desiccation tolerance of hybrid offspring relative to offspring produced from within-population crosses. These contrasting results highlight the need to experimentally evaluate the outcomes of TGF for focal species across generations prior to implementing management actions.
Collapse
Affiliation(s)
- Tabitha S Rudin-Bitterli
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jonathan P Evans
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
4
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
5
|
Mitonuclear mismatch alters nuclear gene expression in naturally introgressed Rhinolophus bats. Front Zool 2021; 18:42. [PMID: 34488775 PMCID: PMC8419968 DOI: 10.1186/s12983-021-00424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023] Open
Abstract
Background Mitochondrial function involves the interplay between mitochondrial and nuclear genomes. Such mitonuclear interactions can be disrupted by the introgression of mitochondrial DNA between taxa or divergent populations. Previous studies of several model systems (e.g. Drosophila) indicate that the disruption of mitonuclear interactions, termed mitonuclear mismatch, can alter nuclear gene expression, yet few studies have focused on natural populations. Results Here we study a naturally introgressed population in the secondary contact zone of two subspecies of the intermediate horseshoe bat (Rhinolophus affinis), in which individuals possess either mitonuclear matched or mismatched genotypes. We generated transcriptome data for six tissue types from five mitonuclear matched and five mismatched individuals. Our results revealed strong tissue-specific effects of mitonuclear mismatch on nuclear gene expression with the largest effect seen in pectoral muscle. Moreover, consistent with the hypothesis that genes associated with the response to oxidative stress may be upregulated in mitonuclear mismatched individuals, we identified several such gene candidates, including DNASE1L3, GPx3 and HSPB6 in muscle, and ISG15 and IFI6 in heart. Conclusion Our study reveals how mitonuclear mismatch arising from introgression in natural populations is likely to have fitness consequences. Underlying the processes that maintain mitonuclear discordance is a step forward to understand the role of mitonuclear interactions in population divergence and speciation. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00424-x.
Collapse
|
6
|
Melander SL, Mueller RL. Comprehensive Analysis of Salamander Hybridization Suggests a Consistent Relationship between Genetic Distance and Reproductive Isolation across Tetrapods. COPEIA 2020. [DOI: 10.1643/ch-19-319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Scott Lucas Melander
- Department of Biology, Colorado State University, 251 W Pitkin Street, Fort Collins, Colorado 80523; (SLM) ; and (RLM) . Send reprint requests to SLM
| | - Rachel Lockridge Mueller
- Department of Biology, Colorado State University, 251 W Pitkin Street, Fort Collins, Colorado 80523; (SLM) ; and (RLM) . Send reprint requests to SLM
| |
Collapse
|
7
|
Cairns NA, Cicchino AS, Stewart KA, Austin JD, Lougheed SC. Cytonuclear discordance, reticulation and cryptic diversity in one of North America's most common frogs. Mol Phylogenet Evol 2020; 156:107042. [PMID: 33338660 DOI: 10.1016/j.ympev.2020.107042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/28/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Complicated phylogenetic histories benefit from diverse sources of inference. Pseudacris crucifer (spring peeper) spans most of eastern North America and comprises six mtDNA lineages that form multiple contact zones. The putative Miocene or early Pliocene origins of the oldest lineages within Pseudacris crucifer imply sufficient time for species-level divergence. To understand why this species appears unified while congeners have radiated, we analyze and compare male advertisement calls, mitochondrial, and nuclear markers and speak to the complex processes that have potentially influenced its contemporary patterns. We find extensive geographic and topological mitonuclear discordance, with three nuclear lineages containing 6 more-structured mtDNA lineages, and nuclear introgression at some contact zones. Male advertisement call differentiation is incongruent with the genetic structure as only one lineage appears differentiated. Occupying the Interior Highlands of the central United States, this Western lineage also has the most concordant mitochondrial and nuclear geographic patterns. Based on our findings we suggest that the antiquity of common ancestors was not as important as the maintenance of allopatry in the divergence in P. crucifer genetic lineages. We use multiple lines of evidence to generate hypotheses of isolation, reticulation, and discordance within this species and to expand our understanding of the early stages of speciation.
Collapse
Affiliation(s)
- N A Cairns
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - A S Cicchino
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, United States.
| | - K A Stewart
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 904 Science Park, 1098XH Amsterdam, North Holland, Netherlands
| | - J D Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, United States.
| | - S C Lougheed
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
8
|
Mao X, Rossiter SJ. Genome-wide data reveal discordant mitonuclear introgression in the intermediate horseshoe bat (Rhinolophus affinis). Mol Phylogenet Evol 2020; 150:106886. [PMID: 32534185 DOI: 10.1016/j.ympev.2020.106886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Closely related taxa often exhibit mitonuclear discordance attributed to introgression of mitochondrial DNA (mtDNA), yet few studies have considered the underlying causes of mtDNA introgression. Here we test for demographic versus adaptive processes as explanations for mtDNA introgression in three subspecies of the intermediate horseshoe bat (Rhinolophus affinis). We generated sequences of 1692 nuclear genes and 13 mitochondrial protein-coding genes for 48 individuals. Phylogenetic reconstructions based on 320 exon sequences and 2217 single nucleotide polymorphisms (SNPs) both revealed conflicts between the species tree and mtDNA tree. These results, together with geographic patterns of mitonuclear discordance, and shared identical or near-identical mtDNA sequences, suggest extensive introgression of mtDNA between the two parapatric mainland subspecies. Under demographic hypotheses, we would also expect to uncover traces of ncDNA introgression, however, population structure and gene flow analyses revealed little nuclear admixture. Furthermore, we found inconsistent estimates of the timing of population expansion and that of the most recent common ancestor for the clade containing introgressed haplotypes. Without a clear demographic explanation, we also examined whether introgression likely arises from adaptation. We found that five mtDNA genes contained fixed amino acid differences between introgressed and non-introgressed individuals, including putative positive selection found in one codon, although this did not show introgression. While our evidence for rejecting demographic hypotheses is arguably stronger than that for rejecting adaptation, we find no definitive support for either explanation. Future efforts will focus on larger-scale resequencing to decipher the underlying causes of discordant mitonuclear introgression in this system.
Collapse
Affiliation(s)
- Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200062, China.
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
9
|
Salminen TS, Vale PF. Drosophila as a Model System to Investigate the Effects of Mitochondrial Variation on Innate Immunity. Front Immunol 2020; 11:521. [PMID: 32269576 PMCID: PMC7109263 DOI: 10.3389/fimmu.2020.00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding why the response to infection varies between individuals remains one of the major challenges in immunology and infection biology. A substantial proportion of this heterogeneity can be explained by individual genetic differences which result in variable immune responses, and there are many examples of polymorphisms in nuclear-encoded genes that alter immunocompetence. However, how immunity is affected by genetic polymorphism in an additional genome, inherited maternally inside mitochondria (mtDNA), has been relatively understudied. Mitochondria are increasingly recognized as important mediators of innate immune responses, not only because they are the main source of energy required for costly immune responses, but also because by-products of mitochondrial metabolism, such as reactive oxygen species (ROS), may have direct microbicidal action. Yet, it is currently unclear how naturally occurring variation in mtDNA contributes to heterogeneity in infection outcomes. In this review article, we describe potential sources of variation in mitochondrial function that may arise due to mutations in vital nuclear and mitochondrial components of energy production or due to a disruption in mito-nuclear crosstalk. We then highlight how these changes in mitochondrial function can impact immune responses, focusing on their effects on ATP- and ROS-generating pathways, as well as immune signaling. Finally, we outline how being a powerful and genetically tractable model of infection, immunity and mitochondrial genetics makes the fruit fly Drosophila melanogaster ideally suited to dissect mitochondrial effects on innate immune responses to infection.
Collapse
Affiliation(s)
- Tiina S. Salminen
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F. Vale
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
Affiliation(s)
- M Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - N Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - R Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
11
|
Lima TG, Burton RS, Willett CS. Genomic scans reveal multiple mito‐nuclear incompatibilities in population crosses of the copepod
Tigriopus californicus. Evolution 2019; 73:609-620. [DOI: 10.1111/evo.13690] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thiago G. Lima
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599
- Marine Biology Research Division Scripps Institution of Oceanography La Jolla California 92037
| | - Ronald S. Burton
- Marine Biology Research Division Scripps Institution of Oceanography La Jolla California 92037
| | - Christopher S. Willett
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599
| |
Collapse
|
12
|
Bisconti R, Porretta D, Arduino P, Nascetti G, Canestrelli D. Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci Rep 2018; 8:13187. [PMID: 30181603 PMCID: PMC6123427 DOI: 10.1038/s41598-018-31535-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/08/2018] [Indexed: 01/17/2023] Open
Abstract
Discordance between mitochondrial and nuclear patterns of population genetic structure is providing key insights into the eco-evolutionary dynamics between and within species, and their assessment is highly relevant to biodiversity monitoring practices based on DNA barcoding approaches. Here, we investigate the population genetic structure of the fire salamander Salamandra salamandra in peninsular Italy. Both mitochondrial and nuclear markers clearly identified two main population groups. However, nuclear and mitochondrial zones of geographic transition between groups were located 600 km from one another. Recent population declines in central Italy partially erased the genetic imprints of past hybridization dynamics. However, the overall pattern of genetic variation, together with morphological and fossil data, suggest that a rampant mitochondrial introgression triggered the observed mitonuclear discordance, following a post-glacial secondary contact between lineages. Our results clearly show the major role played by reticulate evolution in shaping the structure of Salamandra salamandra populations and, together with similar findings in other regions of the species' range, contribute to identify the fire salamander as a particularly intriguing case to investigate the complexity of mechanisms triggering patterns of mitonuclear discordance in animals.
Collapse
Affiliation(s)
- Roberta Bisconti
- Tuscia University, Department of Ecological and Biological Sciences, Viterbo, 01100, Italy.
| | - Daniele Porretta
- University of Rome, "Sapienza", Department of Environmental Biology, Rome, 00185, Italy
| | - Paola Arduino
- Tuscia University, Department of Ecological and Biological Sciences, Viterbo, 01100, Italy
| | - Giuseppe Nascetti
- Tuscia University, Department of Ecological and Biological Sciences, Viterbo, 01100, Italy
| | - Daniele Canestrelli
- Tuscia University, Department of Ecological and Biological Sciences, Viterbo, 01100, Italy
| |
Collapse
|
13
|
Sharbrough J, Cruise JL, Beetch M, Enright NM, Neiman M. Genetic Variation for Mitochondrial Function in the New Zealand Freshwater Snail Potamopyrgus antipodarum. J Hered 2018; 108:759-768. [PMID: 28460111 DOI: 10.1093/jhered/esx041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 02/04/2023] Open
Abstract
The proteins responsible for mitochondrial function are encoded by 2 different genomes with distinct inheritance regimes, rendering rigorous inference of genotype-phenotype connections intractable for all but a few model systems. Asexual organisms provide a powerful means to address these challenges because offspring produced without recombination inherit both nuclear and mitochondrial genomes from a single parent. As such, these offspring inherit mitonuclear genotypes that are identical to the mitonuclear genotypes of their parents and siblings but different from those of other asexual lineages. Here, we compared mitochondrial function across distinct asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail model for understanding the evolutionary consequences of asexuality. Our analyses revealed substantial phenotypic variation across asexual lineages at 3 levels of biological organization: mitogenomic, organellar, and organismal. These data demonstrate that different asexual lineages have different mitochondrial function phenotypes, likely reflecting heritable variation (i.e., the raw material for evolution) for mitochondrial function in P. antipodarum. The discovery of this variation combined with the methods developed here sets the stage to use P. antipodarum to study central evolutionary questions involving mitochondrial function, including whether mitochondrial mutation accumulation influences the maintenance of sexual reproduction in natural populations.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Megan Beetch
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, University of St. Thomas, Saint Paul, MN
| | | | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
14
|
Irwin DE. Sex chromosomes and speciation in birds and other ZW systems. Mol Ecol 2018; 27:3831-3851. [PMID: 29443419 DOI: 10.1111/mec.14537] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome.
Collapse
Affiliation(s)
- Darren E Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
16
|
Edgington HA, Ingram CM, Taylor DR. Cyto-nuclear discordance suggests complex evolutionary history in the cave-dwelling salamander, Eurycea lucifuga. Ecol Evol 2016; 6:6121-38. [PMID: 27648230 PMCID: PMC5016636 DOI: 10.1002/ece3.2212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 11/12/2022] Open
Abstract
Our understanding of the evolutionary history and ecology of cave‐associated species has been driven historically by studies of morphologically adapted cave‐restricted species. Our understanding of the evolutionary history and ecology of nonrestricted cave species, troglophiles, is limited to a few studies, which present differing accounts of troglophiles’ relationship with the cave habitat, and its impact on population dynamics. Here, we used phylogenetics, demographic statistics, and population genetic methods to study lineage divergence, dates of divergence, and population structure in the Cave Salamander, Eurycea lucifuga, across its range. In order to perform these analyses, we sampled 233 individuals from 49 populations, using sequence data from three gene loci as well as genotyping data from 19 newly designed microsatellite markers. We find, as in many other species studied in a phylogeographic context, discordance between patterns inferred from mitochondrial relationships and those inferred by nuclear markers indicating a complicated evolutionary history in this species. Our results suggest Pleistocene‐based divergence among three main lineages within E. lucifuga corresponding to the western, central, and eastern regions of the range, similar to patterns seen in species separated in multiple refugia during climatic shifts. The conflict between mitochondrial and nuclear patterns is consistent with what we would expect from secondary contact between regional populations following expansion from multiple refugia.
Collapse
Affiliation(s)
- Hilary A Edgington
- Ontario Institute for Cancer Research Toronto ON Canada; Department of Biology University of Virginia Charlottesville Virginia
| | - Colleen M Ingram
- Department of Biology University of Virginia Charlottesville Virginia; Division of Vertebrate Biology American Museum of Natural History New York City New York
| | - Douglas R Taylor
- Department of Biology University of Virginia Charlottesville Virginia
| |
Collapse
|