1
|
Winters D, Wilson E, Coster S, Rothenberger M. Integrating Population Genetics With Long-Term Environmental Monitoring to Evaluate and Guide Vernal Pool Creation for Amphibian Conservation. Ecol Evol 2024; 14:e70431. [PMID: 39429796 PMCID: PMC11489881 DOI: 10.1002/ece3.70431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/23/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The decline of biodiversity, particularly among amphibians, is strongly associated with habitat loss and fragmentation. Vernal pools are a critical ecosystem for many pool-breeding amphibians, but they are often overlooked in wetland protection guidelines. Mitigation efforts include vernal pool creation and restoration, but these efforts have varying success in replacing lost functions. This study investigates the success of created vernal pools through long-term environmental monitoring of wood frogs and spotted salamanders (2014-2023) and integrates population genetics to assess the local population health of the wood frog. First, we monitored and compared environmental parameters and reproductive success of indicator species between natural and created pools in a Pennsylvania state park. We then used microsatellite loci to assess within- and between-pool measures of genetic diversity, population structuring, and gene flow for wood frogs. We found two carefully designed created pools positively contributed to local amphibian population persistence by maintaining similar measures of genetic diversity as compared to natural pools. On the other hand, one poorly created pool was genetically distinct and acted as a population sink. Although our findings offer valuable insights, they are based on a limited sample and may not fully represent the broader landscape. However, by integrating genetic information into long-term monitoring datasets, our interdisciplinary approach enhances our understanding of amphibian population dynamics in vernal pool ecosystems. Our findings imply that the most important factors for restoration practitioners to consider when creating or restoring vernal pools are hydroperiod (12-35 weeks), volume (> 50 m3), depth (≥ 30 cm), and surrounding forest land cover (> 60%). These variables are better predictors of indicator species success than pool type (i.e., natural or created). Ultimately, this study emphasizes the need to accompany restoration efforts with long-term monitoring programs that can be used to make adaptive management decisions in an era of extreme environmental change.
Collapse
Affiliation(s)
- Declan M. Winters
- Department of BiologyLafayette CollegeEastonPennsylvaniaUSA
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG)University of California Los AngelesLos AngelesCaliforniaUSA
- Institute for Quantitative and Computational Biosciences (QCBio)University of California Los AngelesLos AngelesCaliforniaUSA
- Department of Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Emily Wilson
- Department of BiologyLafayette CollegeEastonPennsylvaniaUSA
- Environmental Science and Studies ProgramLafayette CollegeEastonPennsylvaniaUSA
- Department of Earth and EnvironmentBoston UniversityBostonMassachusettsUSA
| | | | - Megan B. Rothenberger
- Department of BiologyLafayette CollegeEastonPennsylvaniaUSA
- Environmental Science and Studies ProgramLafayette CollegeEastonPennsylvaniaUSA
| |
Collapse
|
2
|
Martínez-Gil H, Sánchez-Montes G, Montes-Gavilán P, Ugarte G, Martínez-Solano Í. Fine-scale functional connectivity of two syntopic pond-breeding amphibians with contrasting life-history traits: an integrative assessment of direct and indirect estimates of dispersal. CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
AbstractAssessing patterns of functional connectivity among amphibian demes is crucial to unravel their population dynamics and prevent their isolation and eventual extinction. Integrative studies based on direct (capture-mark-recapture) and indirect (genetic) estimates of dispersal provide robust, biologically realistic inferences on population structure and connectivity, with applications for conservation efforts. We focused on two pond-breeding amphibians with contrasting life-history traits: the short-lived, semi-arboreal Hyla molleri and the long-lived, fossorial Pelobates cultripes. We PIT-tagged 2150 individuals of both species in two ponds (Laguna and Gravera, separated by 700 m) and monitored them from 2009 to 2021 to document the frequency and spatial extent of dispersal events. In addition, we genotyped individuals from these and two additional breeding populations at a maximum distance of 5 km with 15–16 microsatellites to characterize fine-scale patterns of genetic structure. We detected dispersal events connecting Laguna and Gravera in both species, albeit at low frequencies (4.8% and 7.7% of recaptured individuals of H. molleri and P. cultripes, respectively). However, both species were capable of covering long distances, with individual accumulated displacements up to 3.5 km (Hyla) and 1.8 km (Pelobates). Breeding populations > 2 km apart were genetically differentiated, indicating lower connectivity at this spatial scale. Estimates of pairwise migration rates differed between species and were asymmetrical, with different ponds representing “source” populations contributing more migrants to other populations in each species. We discuss the role of differences in life history traits and ecological preferences in shaping population dynamics in the two species and highlight management implications of our results.
Collapse
|
3
|
Pool Age and Local Habitat Are Associated with Effective Number of Breeders in Spotted Salamander Populations Colonizing Created Vernal Pools. DIVERSITY 2023. [DOI: 10.3390/d15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Population genetics can reveal whether colonization of created habitats has been successful and inform future strategies for habitat creation. We used genetic analysis to investigate spotted salamander (Ambystoma maculatum) colonization of created vernal pools and explored the impact of habitat characteristics on the genetic diversity and connectivity of the pools. Our first objective was to examine genetic structure, differentiation, diversity, and potential for a founder effect. Our second objective was to determine if habitat characteristics were associated with effective number of breeders, relatedness, or genetic diversity. We sampled spotted salamander larvae in 31 created vernal pools (1–5 years old) in Monongahela National Forest (WV) in May and June 2015 and 2016. The youngest pools exhibited genetic differentiation, a founder effect, and low effective number of breeders. Effective number of breeders was positively associated with pool age, vegetation cover, pool diameter, and sample size. Vegetation cover was also negatively associated with relatedness. Genetic diversity did not have strong environmental predictors. Our results indicated the effective number of breeders increased and genetic differentiation decreased within 4–5 years of pool creation, a sign of rapid colonization and potential population establishment. Our research also showed that higher vegetative cover within the pool and larger pool diameters could impact habitat quality and should be incorporated into future pool creation.
Collapse
|
4
|
Luymes N, Chow-Fraser P. Community structure, species–habitat relationships, and conservation of amphibians in forested vernal pools in the Georgian Bay region of Ontario. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Forested vernal pools serve an integral role in the recruitment of amphibians in glaciated northeastern North America. In south-central Ontario, vernal pools exist in relatively unimpacted forest networks, but the amphibian communities face uncertain challenges from anthropogenic-induced climate change. We surveyed amphibian larvae and collected measurements of habitat characteristics from vernal pools to collect baseline information on amphibian community structure and species–habitat relationships. Amphibian communities were influenced by hydroperiod length and canopy openness, and the relative abundances of early breeding amphibians were affected by changes in the structure of vegetation communities within pools. Our study suggests that, even across moderate ranges of breeding habitat characteristics, the structure of amphibian communities is dynamic. With anthropogenic-induced climate change leading to more drought-prone summers, the conservation of intact forests that support diverse wetland assemblages will be a necessary component of future legislation.
Collapse
Affiliation(s)
- Nick Luymes
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada
| | - Patricia Chow-Fraser
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Schmidt C, Garroway CJ. The population genetics of urban and rural amphibians in North America. Mol Ecol 2021; 30:3918-3929. [PMID: 34053153 DOI: 10.1111/mec.16005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Human land transformation is one of the leading causes of vertebrate population declines. These declines are thought to be partly due to decreased connectivity and habitat loss reducing animal population sizes in disturbed habitats. With time, this can lead to declines in effective population size and genetic diversity which restrict the ability of wildlife to efficiently cope with environmental change through genetic adaptation. However, it is not well understood whether these effects generally hold across taxa. We address this question by repurposing and synthesizing raw microsatellite data from online repositories for 19 amphibian species sampled at 554 georeferenced sites in North America. For each site, we estimated gene diversity, allelic richness, effective population size, and population differentiation. Using binary urban-rural census designations, and continuous measures of human population density, the Human Footprint Index, and impervious surface cover, we tested for generalizable effects of human land use on amphibian genetic diversity. We found minimal evidence, either positive or negative, for relationships between genetic metrics and urbanization. Together with previous work on focal species that also found varying effects of urbanization on genetic composition, it seems likely that the consequences of urbanization are not easily generalizable within or across amphibian species. Questions about the genetic consequences of urbanization for amphibians should be addressed on a case-by-case basis. This contrasts with general negative effects of urbanization in mammals and consistent, but species-specific, positive and negative effects in birds.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Savary P, Foltête JC, Moal H, Vuidel G, Garnier S. Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 2021; 21:1167-1185. [PMID: 33460526 DOI: 10.1111/1755-0998.13333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Graph-theoretic approaches have relevant applications in landscape genetic analyses. When species form populations in discrete habitat patches, genetic graphs can be used (a) to identify direct dispersal paths followed by propagules or (b) to quantify landscape effects on multi-generational gene flow. However, the influence of their construction parameters remains to be explored. Using a simulation approach, we constructed genetic graphs using several pruning methods (geographical distance thresholds, topological constraints, statistical inference) and genetic distances to weight graph links (FST , DPS , Euclidean genetic distances). We then compared the capacity of these different graphs to (a) identify the precise topology of the dispersal network and (b) to infer landscape resistance to gene flow from the relationship between cost-distances and genetic distances. Although not always clear-cut, our results showed that methods based on geographical distance thresholds seem to better identify dispersal networks in most cases. More interestingly, our study demonstrates that a sub-selection of pairwise distances through graph pruning (thereby reducing the number of data points) can counter-intuitively lead to improved inferences of landscape effects on dispersal. Finally, we showed that genetic distances such as the DPS or Euclidean genetic distances should be preferred over the FST for landscape effect inference as they respond faster to landscape changes.
Collapse
Affiliation(s)
- Paul Savary
- ARP-Astrance, 9 Avenue Percier, Paris, 75008, France.,ThéMA, UMR 6049 CNRS, Université Bourgogne-Franche-Comté, 32 Rue Mégevand, Besançon Cedex, 25030, France.,Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Jean-Christophe Foltête
- ThéMA, UMR 6049 CNRS, Université Bourgogne-Franche-Comté, 32 Rue Mégevand, Besançon Cedex, 25030, France
| | - Hervé Moal
- ARP-Astrance, 9 Avenue Percier, Paris, 75008, France
| | - Gilles Vuidel
- ThéMA, UMR 6049 CNRS, Université Bourgogne-Franche-Comté, 32 Rue Mégevand, Besançon Cedex, 25030, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| |
Collapse
|
7
|
Peterman WE, Pope NS. The use and misuse of regression models in landscape genetic analyses. Mol Ecol 2020; 30:37-47. [PMID: 33128830 DOI: 10.1111/mec.15716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
The field of landscape genetics has been rapidly evolving, adopting and adapting analytical frameworks to address research questions. Current studies are increasingly using regression-based frameworks to infer the individual contributions of landscape and habitat variables on genetic differentiation. This paper outlines appropriate and inappropriate uses of multiple regression for these purposes, and demonstrates through simulation the limitations of different analytical frameworks for making correct inference. Of particular concern are recent studies seeking to explain genetic differences by fitting regression models with effective distance variables calculated independently on separate landscape resistance surfaces. When moving across the landscape, organisms cannot respond independently and uniquely to habitat and landscape features. Analyses seeking to understand how landscape features affect gene flow should model a single conductance or resistance surface as a parameterized function of relevant spatial covariates, and estimate the values of these parameters by linking a single set of resistance distances to observed genetic dissimilarity via a loss function. While this loss function may involve a regression-like step, the associated nuisance parameters are not interpretable in terms of organismal movement and should not be conflated with what is actually of interest: the mapping between spatial covariates and conductance/resistance. The growth and evolution of landscape genetics as a field has been rapid and exciting. It is the goal of this paper to highlight past missteps and demonstrate limitations of current approaches to ensure that future use of regression models will appropriately consider the process being modeled, which will provide clarity to model interpretation.
Collapse
Affiliation(s)
- William E Peterman
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Nathaniel S Pope
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Covarrubias S, González C, Gutiérrez‐Rodríguez C. Effects of natural and anthropogenic features on functional connectivity of anurans: a review of landscape genetics studies in temperate, subtropical and tropical species. J Zool (1987) 2020. [DOI: 10.1111/jzo.12851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. Covarrubias
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán México
| | - C. González
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán México
| | | |
Collapse
|
9
|
Nali RC, Becker CG, Zamudio KR, Prado CPA. Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Renato C. Nali
- Programa de Pós‐Graduação em Ciências Biológicas (Zoologia) Instituto de Biociências Universidade Estadual Paulista Rio Claro São Paulo Brazil
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | | | - Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Cynthia P. A. Prado
- Programa de Pós‐Graduação em Ciências Biológicas (Zoologia) Instituto de Biociências Universidade Estadual Paulista Rio Claro São Paulo Brazil
- Departamento de Morfologia e Fisiologia Animal Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista Jaboticabal São Paulo Brazil
| |
Collapse
|
10
|
Haugen H, Linløkken A, Østbye K, Heggenes J. Landscape genetics of northern crested newt Triturus cristatus populations in a contrasting natural and human-impacted boreal forest. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01266-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractAmong vertebrates, amphibians currently have the highest proportion of threatened species worldwide, mainly through loss of habitat, leading to increased population isolation. Smaller amphibian populations may lose more genetic diversity, and become more dependent on immigration for survival. Investigations of landscape factors and patterns mediating migration and population genetic differentiation are fundamental for knowledge-based conservation. The pond-breeding northern crested newt (Triturus cristatus) populations are decreasing throughout Europe, and are a conservation concern. Using microsatellites, we studied the genetic structure of the northern crested newt in a boreal forest ecosystem containing two contrasting landscapes, one subject to recent change and habitat loss by clear-cutting and roadbuilding, and one with little anthropogenic disturbance. Newts from 12 breeding ponds were analyzed for 13 microsatellites and 7 landscape and spatial variables. With a Maximum-likelihood population-effects model we investigated important landscape factors potentially explaining genetic patterns. Results indicate that intervening landscape factors between breeding ponds, explain the genetic differentiation in addition to an isolation-by-distance effect. Geographic distance, gravel roads, and south/south-west facing slopes reduced landscape permeability and increased genetic differentiation for these newts. The effect was opposite for streams, presumably being more favorable for newt dispersal. Populations within or bordering on old growth forest had a higher allelic richness than populations in managed forest outside these areas. Old growth forest areas may be important source habitats in the conservation of northern crested newt populations.
Collapse
|
11
|
Cayuela H, Valenzuela-Sánchez A, Teulier L, Martínez-Solano Í, Léna JP, Merilä J, Muths E, Shine R, Quay L, Denoël M, Clobert J, Schmidt BR. Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/707862] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Baden AL, Mancini AN, Federman S, Holmes SM, Johnson SE, Kamilar J, Louis EE, Bradley BJ. Anthropogenic pressures drive population genetic structuring across a Critically Endangered lemur species range. Sci Rep 2019; 9:16276. [PMID: 31700150 PMCID: PMC6838192 DOI: 10.1038/s41598-019-52689-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
In recent decades Madagascar has experienced significant habitat loss and modification, with minimal understanding of how human land use practices have impacted the evolution of its flora and fauna. In light of ongoing and intensifying anthropogenic pressures, we seek new insight into mechanisms driving genetic variability on this island, using a Critically Endangered lemur species, the black-and-white ruffed lemur (Varecia variegata), as a test case. Here, we examine the relative influence of natural and anthropogenic landscape features that we predict will impose barriers to dispersal and promote genetic structuring across the species range. Using circuit theory, we model functional connectivity among 18 sampling localities using population-based genetic distance (FST). We optimized resistance surfaces using genetic algorithms and assessed their performance using maximum-likelihood population-effects mixed models. The best supported resistance model was a composite surface that included two anthropogenic features, habitat cover and distance to villages, suggesting that rapid land cover modification by humans has driven change in the genetic structure of wild lemurs. Primary conservation priority should be placed on mitigating further forest loss and connecting regions identified as having low dispersal potential to prevent further loss of genetic diversity and promote the survival of other moist forest specialists.
Collapse
Affiliation(s)
- Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Anthropology, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
| | - Amanda N Mancini
- Department of Anthropology, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| | - Sarah Federman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Sheila M Holmes
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Steig E Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Jason Kamilar
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Edward E Louis
- Omaha's Henry Doorly Zoo and Aquarium, 3701S 10th St, Omaha, NE68107, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
13
|
Lourenço A, Gonçalves J, Carvalho F, Wang IJ, Velo‐Antón G. Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol Ecol 2019; 28:4573-4591. [DOI: 10.1111/mec.15249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
Affiliation(s)
- André Lourenço
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
| | - João Gonçalves
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
| | - Filipe Carvalho
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
- Department of Zoology and Entomology School of Biological and Environmental Sciences University of Fort Hare Alice South Africa
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | - Guillermo Velo‐Antón
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão Vairão Portugal
| |
Collapse
|
14
|
Homola JJ, Loftin CS, Kinnison MT. Landscape genetics reveals unique and shared effects of urbanization for two sympatric pool-breeding amphibians. Ecol Evol 2019; 9:11799-11823. [PMID: 31695889 PMCID: PMC6822048 DOI: 10.1002/ece3.5685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023] Open
Abstract
Metapopulation-structured species can be negatively affected when landscape fragmentation impairs connectivity. We investigated the effects of urbanization on genetic diversity and gene flow for two sympatric amphibian species, spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus), across a large (>35,000 km2) landscape in Maine, USA, containing numerous natural and anthropogenic gradients. Isolation-by-distance (IBD) patterns differed between the species. Spotted salamanders showed a linear and relatively high variance relationship between genetic and geographic distances (r = .057, p < .001), whereas wood frogs exhibited a strongly nonlinear and lower variance relationship (r = 0.429, p < .001). Scale dependence analysis of IBD found gene flow has its most predictable influence (strongest IBD correlations) at distances up to 9 km for spotted salamanders and up to 6 km for wood frogs. Estimated effective migration surfaces revealed contrasting patterns of high and low genetic diversity and gene flow between the two species. Population isolation, quantified as the mean IBD residuals for each population, was associated with local urbanization and less genetic diversity in both species. The influence of geographic proximity and urbanization on population connectivity was further supported by distance-based redundancy analysis and multiple matrix regression with randomization. Resistance surface modeling found interpopulation connectivity to be influenced by developed land cover, light roads, interstates, and topography for both species, plus secondary roads and rivers for wood frogs. Our results highlight the influence of anthropogenic landscape features within the context of natural features and broad spatial genetic patterns, in turn supporting the premise that while urbanization significantly restricts interpopulation connectivity for wood frogs and spotted salamanders, specific landscape elements have unique effects on these two sympatric species.
Collapse
Affiliation(s)
| | - Cynthia S. Loftin
- Maine Cooperative Fish and Wildlife Research UnitU.S. Geological SurveyOronoMEUSA
| | | |
Collapse
|
15
|
Huang Y, Zhao W, Ding L, Bao X, Wang J, Lin Y, Ran J, Yang D, Zou H, Liu J. Habitat Selection and Genetic Structure of the Endangered Frog Species Odorrana wuchuanensis (Anura: Ranidae). Zoolog Sci 2019; 36:402-409. [PMID: 33319964 DOI: 10.2108/zs180141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
Understanding the habitat selection and population genetic structure of an endangered species can play important roles in its protection. The Wuchuan odorous frog (Odorrana wuchuanensis) is endemic to the karst regions of southwest China. This frog is currently listed as "Critically Endangered" by the IUCN, but little is known about its habitat selection and population genetics. In this study, we conducted analyses of habitat selection with occurrence/absence sites and environmental data, and assessed the genetic structure between north and south populations in Guizhou provinces in China using three mitochondrial markers. The results revealed that the probability of this frog occupying cave habitats increased with higher average humidity in July and higher lowest temperature in January, but was negatively related to precipitation in January. Analyses of F statistics combined with analyses of median-joining haplotype networks and the phylogenetic tree showed low genetic differentiation between the two populations of O. wuchuanensis. Considering the small population size and geographic isolation because of the complex karst terrains, we suggest careful management practices are needed to protect this species.
Collapse
Affiliation(s)
- Yongjie Huang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinkang Bao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China,
| | - Jing Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
| | - Yinghua Lin
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China,
| | - Jingcheng Ran
- Guizhou Management Station of Wildlife, Guiyang 550000, China
| | - De Yang
- Mayang River National Nature Reserve, Yanhe 565300, China
| | - Hao Zou
- Mayang River National Nature Reserve, Yanhe 565300, China
| | | |
Collapse
|
16
|
Winiarski KJ, Peterman WE, Whiteley AR, McGarigal K. Multiscale resistant kernel surfaces derived from inferred gene flow: An application with vernal pool breeding salamanders. Mol Ecol Resour 2019; 20:97-113. [DOI: 10.1111/1755-0998.13089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Kristopher J. Winiarski
- Department of Environmental Conservation University of Massachusetts Amherst MA USA
- Northeast Climate Adaptation Science Center University of Massachusetts Amherst MA USA
| | - William E. Peterman
- School of Environment and Natural Resources Ohio State University Columbus OH USA
| | - Andrew R. Whiteley
- W.A. Franke College of Forestry and Conservation Wildlife Biology Program University of Montana Missoula MT USA
| | - Kevin McGarigal
- Department of Environmental Conservation University of Massachusetts Amherst MA USA
| |
Collapse
|
17
|
Cayuela H, Bonnaire É, Astruc G, Besnard A. Transport infrastructure severely impacts amphibian dispersal regardless of life stage. Sci Rep 2019; 9:8214. [PMID: 31160685 PMCID: PMC6546755 DOI: 10.1038/s41598-019-44706-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Transport infrastructure such as roads has been reported to negatively affect dispersal. Their effects on dispersal are thought to be complex, depending on the characteristics of the structure and the intensity of the traffic using it. In addition, individual factors, such as age, may strongly affect dispersal decisions and success when individuals are confronted with transport infrastructure. Despite the importance of this topic for wildlife conservation, few studies have investigated the effect of transport infrastructure on individuals’ dispersal decisions before and after sexual maturity. We examined the effects on two kinds of infrastructure, gravel tracks and paved roads, on the dispersal of an endangered amphibian, the yellow-bellied toad (Bombina variegata). We used capture–recapture data collected during a five-year period on a large, spatially structured population of B. variegata. Our study revealed that emigration rates increased with an individual’s age, while dispersal distance decreased. It also showed that both tracks and roads had negative effects on immigration. The negative effect of roads was stronger than that of tracks. We additionally found that the effect of tracks on dispersal slightly decreased with a toad’s age. In contrast, the negative effect of roads was severe and relatively similar across age classes.
Collapse
Affiliation(s)
- Hugo Cayuela
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec, QC, G1V 0A6, Canada.
| | - Éric Bonnaire
- Office National des Forêts, Agence de Verdun, Avenue de Metz, 55100, Verdun, France
| | - Guillelme Astruc
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| | - Aurélien Besnard
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| |
Collapse
|
18
|
Rhoads EA, Williams PK, Krane CM. High inbreeding and low connectivity among Ambystoma texanum populations in fragmented Ohio forests. Ecol Evol 2017; 7:11135-11147. [PMID: 29299288 PMCID: PMC5743690 DOI: 10.1002/ece3.3637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 11/10/2022] Open
Abstract
Habitat loss and fragmentation negatively impact the size and diversity of many natural populations. Woodland amphibians require connected aquatic and terrestrial habitats to complete their life cycle, and often rely on metapopulation structure for long-term persistence. Wetland loss and deforestation fragment amphibian populations, which may result in population isolation and its negative effects. The aim of this research was to analyze the population genetic structure of small-mouthed salamanders (Ambystoma texanum) in western Ohio, where agriculture is now the dominant land use. Salamander tail tissue was collected from eight breeding pools. Three pools occur in the same forest; the other five are in forest patches at distances ranging from 250 m to 20 km from one another. Eight microsatellite loci were amplified by PCR and genotyped for allele size. Observed heterozygosities were lower than expected in all sampled populations; the two most isolated sites (Ha1, Ha2) had the highest inbreeding coefficients. Ha2 also had the lowest mean number of alleles and was found to be genetically differentiated from populations to which our data analysis indicates it was historically connected by gene flow. The most distant site (Ha1) had the highest number of private alleles and showed genetic differentiation from other populations both historically and currently. Geographic distance between pools was strongly correlated with the number of private alleles in a population. The results suggest that population isolation results in decreased genetic diversity and that a breakdown of metapopulation structure due to landscape change may contribute to differentiation between once-connected populations.
Collapse
|
19
|
Gutiérrez-Rodríguez J, Gonçalves J, Civantos E, Martínez-Solano I. Comparative landscape genetics of pond-breeding amphibians in Mediterranean temporal wetlands: The positive role of structural heterogeneity in promoting gene flow. Mol Ecol 2017; 26:5407-5420. [PMID: 28752597 DOI: 10.1111/mec.14272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 01/14/2023]
Abstract
Comparative landscape genetics studies can provide key information to implement cost-effective conservation measures favouring a broad set of taxa. These studies are scarce, particularly in Mediterranean areas, which include diverse but threatened biological communities. Here, we focus on Mediterranean wetlands in central Iberia and perform a multi-level, comparative study of two endemic pond-breeding amphibians, a salamander (Pleurodeles waltl) and a toad (Pelobates cultripes). We genotyped 411 salamanders from 20 populations and 306 toads from 16 populations at 18 and 16 microsatellite loci, respectively, and identified major factors associated with population connectivity through the analysis of three sets of variables potentially affecting gene flow at increasingly finer levels of spatial resolution. Topographic, land use/cover, and remotely sensed vegetation/moisture indices were used to derive optimized resistance surfaces for the two species. We found contrasting patterns of genetic structure, with stronger, finer scale genetic differentiation in Pleurodeles waltl, and notable differences in the role of fine-scale patterns of heterogeneity in vegetation cover and water content in shaping patterns of regional genetic structure in the two species. Overall, our results suggest a positive role of structural heterogeneity in population connectivity in pond-breeding amphibians, with habitat patches of Mediterranean scrubland and open oak woodlands ("dehesas") facilitating gene flow. Our study highlights the usefulness of remotely sensed continuous variables of land cover, vegetation and water content (e.g., NDVI, NDMI) in conservation-oriented studies aimed at identifying major drivers of population connectivity.
Collapse
Affiliation(s)
| | - João Gonçalves
- Centro de Investigacão em Biodiversidade e Recursos Genéticos da Universidade do Porto, CIBIO/InBIO, Vairão, Portugal
| | - Emilio Civantos
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.,Centro de Investigacão em Biodiversidade e Recursos Genéticos da Universidade do Porto, CIBIO/InBIO, Vairão, Portugal
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.,Centro de Investigacão em Biodiversidade e Recursos Genéticos da Universidade do Porto, CIBIO/InBIO, Vairão, Portugal.,Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain.,Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, Seville, Spain
| |
Collapse
|
20
|
van Strien MJ. Consequences of population topology for studying gene flow using link-based landscape genetic methods. Ecol Evol 2017; 7:5070-5081. [PMID: 28770047 PMCID: PMC5528204 DOI: 10.1002/ece3.3075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
Many landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link‐based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.e., the arrangement of populations throughout a landscape). As the population topology is determined in part by the landscape configuration, I argue that it should play a more prominent role in landscape genetics. Making use of existing literature and theoretical examples, I discuss how population topology can influence results in landscape genetic studies and how it can be taken into account to improve the accuracy of these results. In support of my arguments, I have performed a literature review of landscape genetic studies published during the first half of 2015 as well as several computer simulations of gene flow between populations. First, I argue why one should carefully consider which population pairs should be included in link‐based analyses. Second, I discuss several ways in which the population topology can be incorporated in response and explanatory variables. Third, I outline why it is important to sample populations in such a way that a good representation of the population topology is obtained. Fourth, I discuss how statistical testing for link‐based approaches could be influenced by the population topology. I conclude the article with six recommendations geared toward better incorporating population topology in link‐based landscape genetic studies.
Collapse
Affiliation(s)
- Maarten J van Strien
- Planning of Landscape and Urban Systems (PLUS) Institute for Spatial and Landscape Planning ETH Zurich Zürich Switzerland
| |
Collapse
|
21
|
Denton RD, Greenwald KR, Gibbs HL. Locomotor endurance predicts differences in realized dispersal between sympatric sexual and unisexual salamanders. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Robert D. Denton
- Department of Evolution, Ecology and Organismal Biology Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
- Ohio Biodiversity Conservation Partnership Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
| | - Katherine R. Greenwald
- Department of Biology Eastern Michigan University, 441 Mark Jefferson Science Complex Ypsilanti MI 48197 USA
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
- Ohio Biodiversity Conservation Partnership Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
| |
Collapse
|
22
|
|
23
|
Chang X, Zhong D, Lo E, Fang Q, Bonizzoni M, Wang X, Lee MC, Zhou G, Zhu G, Qin Q, Chen X, Cui L, Yan G. Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis. Parasit Vectors 2016; 9:228. [PMID: 27108406 PMCID: PMC4842280 DOI: 10.1186/s13071-016-1513-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Anopheles sinensis is one of the most abundant vectors of malaria and other diseases in Asia. Vector control through the use of insecticides is the front line control method of vector-borne diseases. Pyrethroids are the most commonly used insecticides due to their low toxicity to vertebrates and low repellency. However, the extensive use of insecticides has imposed strong selection pressure on mosquito populations for resistance. High levels of resistance to pyrethroid insecticides and various mutations and haplotypes in the para sodium channel gene that confers knockdown resistance (kdr) have been detected in An. sinensis. Despite the importance of kdr mutations in pyrethroid resistance, the evolutionary origin of the kdr mutations is unknown. This study aims to examine the evolutionary genetics of kdr mutations in relation to spatial population genetic structure of An. sinensis. Methods Adults or larvae of Anopheles sinensis were collected from various geographic locations in China. DNA was extracted from individual mosquitoes. PCR amplification and DNA sequencing of the para-type sodium channel gene were conducted to analyse kdr allele frequency distribution, kdr codon upstream and downstream intron polymorphism, population genetic diversity and kdr codon evolution. The mitochondrial cytochrome c oxidase COI and COII genes were amplified and sequenced to examine population variations, genetic differentiation, spatial population structure, population expansion and gene flow patterns. Results Three non-synonymous mutations (L1014F, L1014C, and L1014S) were detected at the kdr codon L1014 of para-type sodium channel gene. A patchy distribution of kdr mutation allele frequencies from southern to central China was found. Near fixation of kdr mutation was detected in populations from central China, but no kdr mutations were found in populations from southwestern China. More than eight independent mutation events were detected in the three kdr alleles, and at least one of them evolved multiple times subsequent to their first divergence. Based on sequence analysis of the mitochondrial COI and COII genes, significant and large genetic differentiation was detected between populations from southwestern China and central China. The patchy distribution of kdr mutation frequencies is likely a consequence of geographic isolation in the mosquito populations and the long-term insecticide selection. Conclusion Our results indicate multiple origins of the kdr insecticide-resistant alleles in An. sinensis from southern and central China. Local selection related to intense and prolonged use of insecticide for agricultural purposes, as well as frequent migrations among populations are likely the explanations for the patchy distribution of kdr mutations in China. On the contrary, the lack of kdr mutations in Yunnan and Sichuan is likely a consequence of genetic isolation and absence of strong selection pressure. The present study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1513-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuelian Chang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233000, China.,Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA.
| | - Eugenia Lo
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA
| | - Qiang Fang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233000, China.
| | - Mariangela Bonizzoni
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA.,Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA
| | - Guoding Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Qian Qin
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoguang Chen
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA. .,Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
24
|
Veysey Powell JS, Babbitt KJ. Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass. PLoS One 2015; 10:e0143505. [PMID: 26600386 PMCID: PMC4658104 DOI: 10.1371/journal.pone.0143505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Forest buffers are a primary tool used to protect wetland-dependent wildlife. Though implemented widely, buffer efficacy is untested for most amphibian species. Consequently, it remains unclear whether buffers are sufficient for maintaining amphibian populations and if so, how wide buffers should be. We present evidence from a six-year, landscape-scale experiment testing the impacts of clearcutting, buffer width, and hydroperiod on body size and condition and biomass of breeding adults for two amphibian species at 11 vernal pools in the northeastern United States. We randomly assigned treatments (i.e., reference, 100m buffer, 30m buffer) across pools, clearcut to create buffers, and captured all spotted salamanders and wood frogs. Clearcuts strongly and negatively impacted size, condition, and biomass, but wider buffers mitigated effect magnitude and duration. Among recaptured individuals, for example, 30m-treatment salamanders were predicted to be about 9.5 mm shorter than, while 100m-treatment salamanders did not differ in length from, reference-treatment salamanders. Similarly, among recaptured frogs, mean length in the 30m treatment was predicted to decrease by about 1 mm/year, while in the 100m and reference treatments, length was time-invariant. Some, but not all, metrics recovered with time. For example, female new-captured and recaptured salamanders were predicted, respectively and on average, to weigh 4.5 and 7 g less in the 30m versus reference treatment right after the cut. While recaptured-female mass was predicted to recover by 9.5 years post-cut, new-captured-female mass did not recover. Hydroperiod was an important mediator: in the 100m treatment, cutting predominately affected pools that were stressed hydrologically. Overall, salamanders and female frogs were impacted more than male frogs. Our results highlight the importance of individualized metrics like body size, which can reveal sublethal effects and illuminate mechanisms by which habitat disturbance impacts wildlife populations. Individualized metrics thus provide critical insights that complement species occurrence and abundance-based population assessments.
Collapse
Affiliation(s)
- Jessica S. Veysey Powell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Kimberly J. Babbitt
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
25
|
Ferrer ES, García-Navas V, Bueno-Enciso J, Barrientos R, Serrano-Davies E, Cáliz-Campal C, Sanz JJ, Ortego J. The influence of landscape configuration and environment on population genetic structure in a sedentary passerine: insights from loci located in different genomic regions. J Evol Biol 2015; 29:205-19. [DOI: 10.1111/jeb.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
Affiliation(s)
- E. S. Ferrer
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - V. García-Navas
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - J. Bueno-Enciso
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - R. Barrientos
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - E. Serrano-Davies
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - C. Cáliz-Campal
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| | - J. J. Sanz
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - J. Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
26
|
Veysey Powell JS, Babbitt KJ. An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians. PLoS One 2015; 10:e0133642. [PMID: 26196129 PMCID: PMC4510551 DOI: 10.1371/journal.pone.0133642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
Vegetated buffers are used extensively to manage wetland-dependent wildlife. Despite widespread application, buffer utility has not been experimentally validated for most species. To address this gap, we conducted a six-year, landscape-scale experiment, testing how buffers of different widths affect the demographic structure of two amphibian species at 11 ephemeral pools in a working forest of the northeastern U.S. We randomly assigned each pool to one of three treatments (i.e., reference, 100m buffer, 30m buffer) and clearcut to create buffers. We captured all spotted salamanders and wood frogs breeding in each pool and examined the impacts of treatment and hydroperiod on breeding-population abundance, sex ratio, and recapture rate. The negative effects of clearcutting tended to increase as forest-buffer width decreased and be strongest for salamanders and when other stressors were present (e.g., at short-hydroperiod pools). Recapture rates were reduced in the 30m, but not 100m, treatment. Throughout the experiment for frogs, and during the first year post-cut for salamanders, the predicted mean proportion of recaptured adults in the 30m treatment was only 62% and 40%, respectively, of that in the reference treatment. Frog sex ratio and abundance did not differ across treatments, but salamander sex ratios were increasingly male-biased in both cut treatments. By the final year, there were on average, only about 40% and 65% as many females predicted in the 100m and 30m treatments, respectively, compared to the first year. Breeding salamanders at short-hydroperiod pools were about 10% as abundant in the 100m versus reference treatment. Our study demonstrates that buffers partially mitigate the impacts of habitat disturbance on wetland-dependent amphibians, but buffer width and hydroperiod critically mediate that process. We provide the first experimental evidence showing that 30-m-wide buffers may be insufficient for maintaining resilient breeding populations of pool-dependent amphibians, at least during the first six years post-disturbance.
Collapse
Affiliation(s)
- Jessica S. Veysey Powell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Kimberly J. Babbitt
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|