1
|
Haberski A, Caterino MS. Endogean habits drove cryptic diversification in Appalachian Lathrobium Gravenhorst (Coleoptera, Staphylinidae). Mol Phylogenet Evol 2025; 204:108252. [PMID: 39617090 DOI: 10.1016/j.ympev.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
The southern Appalachian Mountains are a biodiverse region with high levels of endemism. Shared biogeographic patterns among co-distributed, but independent taxa might illuminate common drivers of Appalachian endemism. Lathrobium is a Holarctic genus with 38 species described form North America, six of which are flightless and endemic to the high Appalachians. We use an integrative morphological and multi-locus molecular dataset to study phylogenetic and biogeographical relationships of Appalachian Lathrobium and test subgeneric hypotheses. A phylogeny based on 176 samples from 67 taxa supported three independent arrivals in the Appalachian Mountains. Divergence times estimated in BEAST2 were concurrent for all three lineages and fell between the Miocene or early Pliocene (16.4 - 4.6 Ma). Speciation within Appalachians occurred during the Pleistocene (2.3 - 0.1 Ma). Monophyly of existing subgenera was supported except for Abletobium Casey. Abletobium is placed in synonymy with Glyptomerus Müller. Our results reveal the importance of cold-climate refugia within the Appalachian Mountains for the persistence and in-situ diversification of endemic endogean taxa. We hypothesize that the xeric climate of the Miocene drove Lathrobium lineages into the mountains and subsequent isolation in mountaintop refugia during warm Pleistocene interglacials led to speciation.
Collapse
Affiliation(s)
- Adam Haberski
- Dept. of Plant & Environmental Sciences, 171 Poole Agricultural Center, Clemson University, Clemson, SC 29634-0310, USA.
| | - Michael S Caterino
- Dept. of Plant & Environmental Sciences, 171 Poole Agricultural Center, Clemson University, Clemson, SC 29634-0310, USA
| |
Collapse
|
2
|
Monjaraz-Ruedas R, Starrett J, Newton L, Bond JE, Hedin M. Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae). Mol Ecol 2024; 33:e17540. [PMID: 39377248 DOI: 10.1111/mec.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Although patterns of population genomic variation are well-studied in animals, there remains room for studies that focus on non-model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome-wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within- and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small-bodied taxa. We also predicted greater genetic differentiation in small-bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation-by-distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species-rich animal clade.
Collapse
Affiliation(s)
| | - James Starrett
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Lacie Newton
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Brandt S, Lyle R, Sole C. The Phylogeography and Diversification of an Endemic Trapdoor Spider Genus, Stasimopus Simon 1892 (Araneae, Mygalomorphae, Stasimopidae) in the Karoo, South Africa. Ecol Evol 2024; 14:e70621. [PMID: 39583045 PMCID: PMC11586105 DOI: 10.1002/ece3.70621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The genus Stasimopus is endemic to South Africa but has never undergone a phylogeographic review. This study aims to unravel the phylogeographic patterns and history of the many Stasimopus species which occur in the greater Karoo region. A fossil-calibrated phylogeny was produced based on three gene regions (CO1, 16S and EF-1ɣ) for Stasimopus (Cor-k-lid trapdoor spiders) specimens collected in the Karoo region, to infer dates of origin and diversification. Demographic analyses were performed on species with sufficient sample sizes (> 4). Haplotype networks were constructed for each gene region and plotted on a map to infer phylogeographic patterns. Lastly, Mantel tests were performed to test for isolation by distance. It was found that 15 species occur in the Karoo and that the genus radiation in the area is in the early Palaeocene. Most diversification occurred between the late Eocene and the Miocene, coinciding with significant changes in climate. Several species show signals of demographic expansions. Isolation by distance was detected, but only with a slight correlation. It is apparent that aridification has played a vital role in the diversification of the genus in the Karoo region. This is a shared biogeographic influence between the mygalomorph fauna of the Karoo and arid region of western Australia. Stasimopus has radiated from the late Eocene and through the Miocene resulting in 15 extant species in the region. The Tankwa Karoo has been identified as a possible Pleistocene glacial cycle refugia for the species S. leipoldti. Many of the species in the Karoo are short-range endemics, making them of high conservation concern. This study provided vital information as the Karoo is undergoing further desertification due to factors such as climate change, which may affect the future of short-range endemic spiders.
Collapse
Affiliation(s)
- Shannon Brandt
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- INRAE, UMR BIOGECOBordeauxFrance
| | - Robin Lyle
- Agricultural Research Council – Plant Health and Protection, BiosystematicsPretoriaSouth Africa
| | - Catherine Sole
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
4
|
Pallarés S, Ortego J, Carbonell JA, Franco-Fuentes E, Bilton DT, Millán A, Abellán P. Genomic, morphological and physiological data support fast ecotypic differentiation and incipient speciation in an alpine diving beetle. Mol Ecol 2024; 33:e17487. [PMID: 39108249 DOI: 10.1111/mec.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex Agabus bipustulatus species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist A. bipustulatus and another corresponding to the strictly-alpine A. nevadensis, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that A. nevadensis is an alpine ecotype of A. bipustulatus, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of A. bipustulatus. Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
| | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| | | | | | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Pedro Abellán
- Department of Zoology, University of Seville, Seville, Spain
| |
Collapse
|
5
|
Davis HR, Sanford HT, Das I, Nashriq I, Leaché AD. Establishing species boundaries in Bornean geckos. Biol Lett 2024; 20:20240157. [PMID: 39140204 PMCID: PMC11322891 DOI: 10.1098/rsbl.2024.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Species delimitation using mitochondrial DNA (mtDNA) remains an important and accessible approach for discovering and delimiting species. However, delimiting species with a single locus (e.g. DNA barcoding) is biased towards overestimating species diversity. The highly diverse gecko genus Cyrtodactylus is one such group where delimitation using mtDNA remains the paradigm. In this study, we use genomic data to test putative species boundaries established using mtDNA within three recognized species of Cyrtodactylus on the island of Borneo. We predict that multi-locus genomic data will estimate fewer species than mtDNA, which could have important ramifications for the species diversity within the genus. We aim to (i) investigate the correspondence between species delimitations using mtDNA and genomic data, (ii) infer species trees for each target species, and (iii) quantify gene flow and identify migration patterns to assess population connectivity. We find that species diversity is overestimated and that species boundaries differ between mtDNA and nuclear data. This underscores the value of using genomic data to reassess mtDNA-based species delimitations for taxa lacking clear species boundaries. We expect the number of recognized species within Cyrtodactylus to continue increasing, but, when possible, genomic data should be included to inform more accurate species boundaries.
Collapse
Affiliation(s)
- Hayden R. Davis
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA98195, USA
| | - Henry T. Sanford
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA98195, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti of Malaysia, Sarawak, Kota Samarahan, Malaysia
| | - Izneil Nashriq
- Institute of Biodiversity and Environmental Conservation, Universiti of Malaysia, Sarawak, Kota Samarahan, Malaysia
| | - Adam D. Leaché
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
6
|
Heine HLA, Derkarabetian S, Morisawa R, Fu PA, Moyes NHW, Boyer SL. Machine learning approaches delimit cryptic taxa in a previously intractable species complex. Mol Phylogenet Evol 2024; 195:108061. [PMID: 38485107 DOI: 10.1016/j.ympev.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Cryptic species are not diagnosable via morphological criteria, but can be detected through analysis of DNA sequences. A number of methods have been developed for identifying species based on genetic data; however, these methods are prone to over-splitting taxa with extreme population structure, such as dispersal-limited organisms. Machine learning methodologies have the potential to overcome this challenge. Here, we apply such approaches, using a large dataset generated through hybrid target enrichment of ultraconserved elements (UCEs). Our study taxon is the Aoraki denticulata species complex, a lineage of extremely low-dispersal arachnids endemic to the South Island of Aotearoa New Zealand. This group of mite harvesters has been the subject of previous species delimitation studies using smaller datasets generated through Sanger sequencing and analytical approaches that rely on multispecies coalescent models and barcoding gap discovery. Those analyses yielded a number of putative cryptic species that seems unrealistic and extreme, based on what we know about species' geographic ranges and genetic diversity in non-cryptic mite harvesters. We find that machine learning approaches, on the other hand, identify cryptic species with geographic ranges that are similar to those seen in other morphologically diagnosable mite harvesters in Aotearoa New Zealand's South Island. We performed both unsupervised and supervised machine learning analyses, the latter with training data drawn either from animals broadly (vagile and non-vagile) or from a custom training dataset from dispersal-limited harvesters. We conclude that applying machine learning approaches to the analysis of UCE-derived genetic data is an effective method for delimiting species in complexes of low-vagility cryptic species, and that the incorporation of training data from biologically relevant analogues can be critically informative.
Collapse
Affiliation(s)
- Haley L A Heine
- Biology Department, Macalester College, 1600 Grand Ave., St. Paul, MN 55105, USA.
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.
| | - Rina Morisawa
- Biology Department, Macalester College, 1600 Grand Ave., St. Paul, MN 55105, USA.
| | - Phoebe A Fu
- Biology Department, Macalester College, 1600 Grand Ave., St. Paul, MN 55105, USA.
| | - Nathaniel H W Moyes
- Biology Department, Macalester College, 1600 Grand Ave., St. Paul, MN 55105, USA.
| | - Sarah L Boyer
- Biology Department, Macalester College, 1600 Grand Ave., St. Paul, MN 55105, USA.
| |
Collapse
|
7
|
Starrett J, Jochim EE, Quayle IL, Zahnle XJ, Bond JE. Microgeographic population structuring in a genus of California trapdoor spiders and discovery of an enigmatic new species (Euctenizidae: Promyrmekiaphila korematsui sp. nov.). Ecol Evol 2024; 14:e10983. [PMID: 38435003 PMCID: PMC10905247 DOI: 10.1002/ece3.10983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
The recognition and delineation of cryptic species remains a perplexing problem in systematics, evolution, and species delimitation. Once recognized as such, cryptic species complexes provide fertile ground for studying genetic divergence within the context of phenotypic and ecological divergence (or lack thereof). Herein we document the discovery of a new cryptic species of trapdoor spider, Promyrmekiaphila korematsui sp. nov. Using subgenomic data obtained via target enrichment, we document the phylogeography of the California endemic genus Promyrmekiaphila and its constituent species, which also includes P. clathrata and P. winnemem. Based on these data we show a pattern of strong geographic structuring among populations but cannot entirely discount recent gene flow among populations that are parapatric, particularly for deeply diverged lineages within P. clathrata. The genetic data, in addition to revealing a new undescribed species, also allude to a pattern of potential phenotypic differentiation where species likely come into close contact. Alternatively, phenotypic cohesion among genetically divergent P. clathrata lineages suggests that some level of gene flow is ongoing or occurred in the recent past. Despite considerable field collection efforts over many years, additional sampling in potential zones of contact for both species and lineages is needed to completely resolve the dynamics of divergence in Promyrmekiaphila at the population-species interface.
Collapse
|
8
|
Liu Y, Wang H, Yang J, Dao Z, Sun W. Conservation genetics and potential geographic distribution modeling of Corybas taliensis, a small 'sky Island' orchid species in China. BMC PLANT BIOLOGY 2024; 24:11. [PMID: 38163918 PMCID: PMC10759615 DOI: 10.1186/s12870-023-04693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Corybas taliensis is an endemic species of sky islands in China. Its habitat is fragile and unstable, and it is likely that the species is threatened. However, it is difficult to determine the conservation priority or unit without knowing the genetic background and the overall distribution of this species. In this study, we used double digest restriction-site associated DNA-sequencing (ddRAD-seq) to investigate the conservation genomics of C. taliensis. At the same time, we modeled the extent of suitable habitat for C. taliensis in present and future (2030 and 2090) habitat using the maximum-entropy (MaxEnt) model. RESULTS The results suggested that the related C. fanjingshanensis belongs to C. taliensis and should not be considered a separate species. All the sampling locations were divided into three genetic groups: the Sichuan & Guizhou population (SG population), the Hengduan Mountains population (HD population) and Himalayan population (HM population), and we found that there was complex gene flow between the sampling locations of HD population. MT was distinct genetically from the other sampling locations due to the unique environment in Motuo. The genetic diversity (π, He) of C. taliensis was relatively high, but its contemporary effective population size (Ne) was small. C. taliensis might be currently affected by inbreeding depression, although its large population density may be able to reduce the effect of this. The predicted areas of suitable habitat currently found in higher mountains will not change significantly in the future, and these suitable habitats are predicted to spread to other higher mountains under future climate change. However, suitable habitat in relatively low altitude areas may disappear in the future. This suggests that C. taliensis will be caught in a 'summit trap' in low altitude areas, however, in contrast, the high altitude of the Himalaya and the Hengduan Mountains are predicted to act as 'biological refuges' for C. taliensis in the future. CONCLUSIONS These results not only provide a new understanding of the genetic background and potential resource distribution of C. taliensis, but also lay the foundation for its conservation and management.
Collapse
Affiliation(s)
- Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huichun Wang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
| |
Collapse
|
9
|
Caterino M, Recuero E. Molecular diversity of Protura in southern High Appalachian leaf litter. Biodivers Data J 2023; 11:e113342. [PMID: 38312343 PMCID: PMC10838044 DOI: 10.3897/bdj.11.e113342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 02/06/2024] Open
Abstract
The higher elevations of the southern Appalachian Mountains, U.S.A., host a rich, but little-studied fauna of Proturan hexapods. Here, we publish 117 Proturan barcode sequences from this region, estimated by automated species delimitation methods to represent 72 distinct species, whereas only nine species have previously been reported from the region. Two families, Eosentomidae and Acerentomidae, co-occur at most sampling sites, with as many as five species occurring in sympatry. Most populations exhibit very low haplotype diversity, but divergences amongst populations and amongst closely-related species are very high, a finding common to other phylogeographic studies of Proturans. Though we were unable to identify any of the barcodes to species, they form a useful, if preliminary, glimpse of southern Appalachian Proturan diversity.
Collapse
Affiliation(s)
- Michael Caterino
- Clemson University, Clemson, United States of America Clemson University Clemson United States of America
| | - Ernesto Recuero
- Clemson University, Clemson, United States of America Clemson University Clemson United States of America
| |
Collapse
|
10
|
Brandt S, Sole C, Lyle R. The phylogenetic structure and coalescent species delimitation of an endemic trapdoor spider genus, Stasimopus (Araneae, Mygalomorphae, Stasimopidae) in the Karoo region of South Africa. Mol Phylogenet Evol 2023; 184:107798. [PMID: 37094612 DOI: 10.1016/j.ympev.2023.107798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
The Karoo region of South Africa is a unique and sensitive ecosystem which is facing pressure for development due to economic incentives such as mining, farming and shale gas exploration. The species diversity of many taxa in the area is largely unknown. A phylogenetic analysis of the cork-lid trapdoor spider genus, Stasimopus (Stasimopidae) was undertaken in order to gain insight into the relationships between the species that may be present in the area. The species within Stasimopus are challenging to identify and define using traditional morphological methods due to a high degree of morphological conservatism within the genus. For this reason, multiple coalescent based species delimitation methods were used to attempt to determine the species present for Stasimopus in the region which was tested against the morphological identifications and genetic clades (based on CO1, 16S and EF-1ɣ). We tested single-locus methods Automatic Barcode Gap Discovery (ABGD), Bayesian implementation of Poisson Tree Processes (bPTP) and General Mixed Yule- Coalescent (GMYC), as well as multi-locus Brownie. The phylogenetic analysis of Stasimopus in the Karoo showed that there is a high degree of genetic diversity within the genus. The species delimitation results proved unfruitful for the genus, as they appear to delimit population structure rather than species for most methods. Alternative methods should be investigated to aid in the identification of the species in order truly understand the species diversity of the genus.
Collapse
Affiliation(s)
- Shannon Brandt
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - Catherine Sole
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - Robin Lyle
- Agricultural Research Council - Plant Health and Protection, Biosystematics, Roodeplaat, Pretoria, South Africa
| |
Collapse
|
11
|
Newton LG, Starrett J, Jochim EE, Bond JE. Phylogeography and cohesion species delimitation of California endemic trapdoor spiders within the Aptostichus icenoglei sibling species complex (Araneae: Mygalomorphae: Euctenizidae). Ecol Evol 2023; 13:e10025. [PMID: 37122769 PMCID: PMC10133383 DOI: 10.1002/ece3.10025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population-level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genus Aptostichus, most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot. Specifically, the Aptostichus icenoglei complex, which comprises the three sibling species, A. barackobamai, A. isabella, and A. icenoglei, exhibits evidence of cryptic mitochondrial DNA diversity throughout their ranges in Northern, Central, and Southern California. Our study aimed to explicitly test species hypotheses within this assemblage by implementing a cohesion species-based approach. We used genomic-scale data (ultraconserved elements, UCEs) to first evaluate genetic exchangeability and then assessed ecological interchangeability of genetic lineages. Biogeographical analysis was used to assess the likelihood of dispersal versus vicariance events that may have influenced speciation pattern and process across the CAFP's complex geologic and topographic landscape. Considering the lack of congruence across data types and analyses, we take a more conservative approach by retaining species boundaries within A. icenoglei.
Collapse
Affiliation(s)
- Lacie G. Newton
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - James Starrett
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Emma E. Jochim
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jason E. Bond
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
12
|
Ortiz D, Pekár S, Bryjová A. Gene flow assessment helps to distinguish strong genomic structure from speciation in an Iberian ant-eating spider. Mol Phylogenet Evol 2023; 180:107682. [PMID: 36574825 DOI: 10.1016/j.ympev.2022.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Although genomic data is boosting our understanding of evolution, we still lack a solid framework to perform reliable genome-based species delineation. This problem is especially critical in the case of phylogeographically structured organisms, with allopatric populations showing similar divergence patterns as species. Here, we assess the species limits and phylogeography of Zodarion alacre, an ant-eating spider widely distributed across the Iberian Peninsula. We first performed species delimitation based on genome-wide data and then validated these results using additional evidence. A commonly employed species delimitation strategy detected four distinct lineages with almost no admixture, which present allopatric distributions. These lineages showed ecological differentiation but no clear morphological differentiation, and evidence of introgression in a mitochondrial barcode. Phylogenomic networks found evidence of substantial gene flow between lineages. Finally, phylogeographic methods highlighted remarkable isolation by distance and detected evidence of range expansion from south-central Portugal to central-north Spain. We conclude that despite their deep genomic differentiation, the lineages of Z. alacre do not show evidence of complete speciation. Our results likely shed light on why Zodarion is among the most diversified spider genera despite its limited distribution and support the use of gene flow evidence to inform species boundaries.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia.
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
13
|
Hedin M, Milne MA. New species in old mountains: integrative taxonomy reveals ten new species and extensive short-range endemism in Nesticus spiders (Araneae, Nesticidae) from the southern Appalachian Mountains. Zookeys 2023; 1145:1-130. [DOI: 10.3897/zookeys.1145.96724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
This revision is based on sampling efforts over the past three decades in the southern Appalachian Mountains which have provided Nesticus (Araneae, Nesticidae) collections of approximately 2100 adult specimens from more than 475 unique collecting events. Using a “morphology first” framework we examined recently collected specimens plus museum material to formulate morphology-based species hypotheses for putative new taxa (discovery phase). Using sequence capture of nuclear ultraconserved elements (UCEs) we analyzed 801 nuclear loci to validate new (and prior) morphology-based species hypotheses (validation phase) and reconstructed a robust backbone phylogeny including all described and new species. Sanger sequencing and UCE-bycatch were also used to gather mitochondrial data for more than 240 specimens. Based on our integrative taxonomic framework ten new Nesticus species are herein described, including N. binfordaesp. nov., N. bondisp. nov., N. caneisp. nov., N. cherokeensissp. nov., N. dellingerisp. nov., N. dykemanaesp. nov., N. jemisinaesp. nov., N. lowderisp. nov., N. roanensissp. nov., and N. templetonisp. nov. Previously unknown males are also described for N. bishopi Gertsch, 1984, N. crosbyi Gertsch, 1984, and N. silvanus Gertsch, 1984, as well as the previously unknown female for N. mimus Gertsch, 1984. Based on combined evidence N. cooperi Gertsch, 1984 is placed in synonymy with N. reclusus Gertsch, 1984. Overall, the montane radiation of Appalachian Nesticus reveals a general lack of species sympatry and compelling biogeographic patterns. Several regional Nesticus taxa are rare, microendemic habitat specialists that deserve conservation attention and detailed future monitoring as conservation sentinels.
Collapse
|
14
|
Specific and Intraspecific Diversity of Symphypleona and Neelipleona (Hexapoda: Collembola) in Southern High Appalachia (USA). DIVERSITY 2022. [DOI: 10.3390/d14100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Collembola, commonly known as springtails, are important detritivores, abundant in leaf litter and soil globally. Springtails are wingless hexapods with many North American species having wide distributions ranging from as far as Alaska to Mexico. Here, we analyze the occurrence and intraspecific diversity of springtails with a globular body shape (Symphypleona and Neelipleona), in southern high Appalachia, a significant biodiversity hotspot. The peaks of high Appalachia represent ‘sky islands’ due to their physical isolation, and they host numerous endemic species in other taxa. We surveyed globular Collembola through COI metabarcoding, assessing geographic and genetic diversity across localities and species. Intraspecific diversity in globular Collembola was extremely high, suggesting that considerable cryptic speciation has occurred. While we were able to associate morphospecies with described species in most of the major families in the region (Dicyrtomidae, Katiannidae, Sminthuridae, and Sminthurididae), other families (Neelidae, and Arrhopalitidae) are in more pressing need of taxonomic revision before species identities can be confirmed. Due to poor representation in databases, and high intraspecific variability, no identifications were accomplished through comparison with available DNA barcodes.
Collapse
|
15
|
The Warps and Wefts of a Polyploidy Complex: Integrative Species Delimitation of the Diploid Leucanthemum (Compositae, Anthemideae) Representatives. PLANTS 2022; 11:plants11141878. [PMID: 35890512 PMCID: PMC9319895 DOI: 10.3390/plants11141878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Species delimitation—owing to the paramount role of the species rank in evolutionary, ecological, and nature conservation studies—is an essential contribution of taxonomy to biodiversity research. In an ‘integrative taxonomy’ approach to species delimitation on the diploid level, we searched for evolutionary significant units (the warps and wefts) that gave rise to the polyploid complex of European ox-eye daisies (Leucanthemum; Compositae-Anthemideae). Species discovery and validation methods based on genetic, ecological, geographical, and morphometric datasets were applied to test the currently accepted diploid morpho-species, i.e., morphologically delimited species, in Leucanthemum. Novel approaches were taken in the analyses of RADseq data (consensus clustering), morphometrics of reconstructed leaf silhouettes from digitized herbarium specimens, and quantification of species-distribution overlaps. We show that 17 of the 20 Leucanthemum morpho-species are supported by genetic evidence. The taxonomic rank of the remaining three morpho-species was resolved by combining genealogic, ecologic, geographic, and morphologic data in the framework of von Wettstein’s morpho-geographical species concept. We herewith provide a methodological pipeline for the species delimitation in an ‘integrative taxonomy’ fashion using sources of evidence from genealogical, morphological, ecological, and geographical data in the philosophy of De Queiroz’s “Unified Species Concept”.
Collapse
|
16
|
Ciaccio E, Debray A, Hedin M. Phylogenomics of paleoendemic lampshade spiders (Araneae, Hypochilidae, Hypochilus), with the description of a new species from montane California. Zookeys 2022; 1086:163-204. [PMID: 35221748 PMCID: PMC8873193 DOI: 10.3897/zookeys.1086.77190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Hypochilus is a relictual lineage of Nearctic spiders distributed disjunctly across the United States in three montane regions (California, southern Rocky Mountains, southern Appalachia). Phylogenetic resolution of species relationships in Hypochilus has been challenging, and conserved morphology coupled with extreme genetic divergence has led to uncertain species limits in some complexes. Here, Hypochilus interspecies relationships have been reconstructed and cryptic speciation more critically evaluated using a combination of ultraconserved elements, mitochondrial CO1 by-catch, and morphology. Phylogenomic data strongly support the monophyly of regional clades and support a ((California, Appalachia), southern Rocky Mountains) topology. In Appalachia, five species are resolved as four lineages (H.thorelli Marx, 1888 and H.coylei Platnick, 1987 are clearly sister taxa), but the interrelationships of these four lineages remain unresolved. The Appalachian species H.pococki Platnick, 1987 is recovered as monophyletic but is highly genetically structured at the nuclear level. While algorithmic analyses of nuclear data indicate many species (e.g., all H.pococki populations as species), male morphology instead reveals striking stasis. Within the California clade, nuclear and mitochondrial lineages of H.petrunkevitchi Gertsch, 1958 correspond directly to drainage basins of the southern Sierra Nevada, with H.bernardino Catley, 1994 nested within H.petrunkevitchi and sister to the southernmost basin populations. Combining nuclear, mitochondrial, geographical, and morphological evidence a new species from the Tule River and Cedar Creek drainages is described, Hypochilusxomotesp. nov. We also emphasize the conservation issues that face several microendemic, habitat-specialized species in this remarkable genus.
Collapse
Affiliation(s)
- Erik Ciaccio
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Idaho, USA University of Idaho Idaho United States of America
| | - Andrew Debray
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America.,Nano PharmaSolutions Inc., San Diego, California, USA Nano PharmaSolutions Inc. San Diego United States of America
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America
| |
Collapse
|
17
|
Derkarabetian S, Starrett J, Hedin M. Using natural history to guide supervised machine learning for cryptic species delimitation with genetic data. Front Zool 2022; 19:8. [PMID: 35193622 PMCID: PMC8862334 DOI: 10.1186/s12983-022-00453-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
The diversity of biological and ecological characteristics of organisms, and the underlying genetic patterns and processes of speciation, makes the development of universally applicable genetic species delimitation methods challenging. Many approaches, like those incorporating the multispecies coalescent, sometimes delimit populations and overestimate species numbers. This issue is exacerbated in taxa with inherently high population structure due to low dispersal ability, and in cryptic species resulting from nonecological speciation. These taxa present a conundrum when delimiting species: analyses rely heavily, if not entirely, on genetic data which over split species, while other lines of evidence lump. We showcase this conundrum in the harvester Theromaster brunneus, a low dispersal taxon with a wide geographic distribution and high potential for cryptic species. Integrating morphology, mitochondrial, and sub-genomic (double-digest RADSeq and ultraconserved elements) data, we find high discordance across analyses and data types in the number of inferred species, with further evidence that multispecies coalescent approaches over split. We demonstrate the power of a supervised machine learning approach in effectively delimiting cryptic species by creating a "custom" training data set derived from a well-studied lineage with similar biological characteristics as Theromaster. This novel approach uses known taxa with particular biological characteristics to inform unknown taxa with similar characteristics, using modern computational tools ideally suited for species delimitation. The approach also considers the natural history of organisms to make more biologically informed species delimitation decisions, and in principle is broadly applicable for taxa across the tree of life.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA.
| | - James Starrett
- Department of Entomology and Nematology, University of California, Davis, Briggs Hall, Davis, CA, 95616-5270, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| |
Collapse
|
18
|
Li D, Chen Z, Liu F, Li D, Xu X. An integrative approach reveals high species diversity in the primitively segmented spider genus. INVERTEBR SYST 2022. [DOI: 10.1071/is21058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accurate species delimitation is crucial for our understanding of evolution, biodiversity and conservation. However, morphology-based species delimitation alone appears to be prone to taxonomic errors and ineffective for taxa with high interspecific morphological homogeneity or intraspecific morphological variations, as is the case for mesothele and mygalomorph spiders. Combined molecular–morphology species delimitation has shown great potential to delimit species boundaries in such ancient lineages. In the present study, molecular and morphological evidence were integrated to delimit species of the primitively segmented spider genus Songthela Ono, 2000. The cytochrome c oxidase subunit I gene (COI) was sequenced for 192 novel specimens belonging to 12 putative morphospecies. The evolutionary relationships within Songthela and the 12-morphospecies hypothesis were tested in two steps – species discovery and species validation – using four single-locus species delimitation approaches. All species delimitation analyses supported the 12-species hypothesis. Phylogenetic analyses yielded three major clades in Songthela, which are consistent with morphology. Accordingly, we assigned 19 known and 11 new species (S. aokoulong, sp. nov., S. bispina, sp. nov., S. dapo, sp. nov., S. huayanxi, sp. nov., S. lianhe, sp. nov., S. lingshang, sp. nov., S. multidentata, sp. nov., S. tianmen, sp. nov., S. unispina, sp. nov., S. xiujian, sp. nov., S. zizhu, sp. nov.) of Songthela to three species-groups: the bispina-group, the multidentata-group and the unispina-group. Another new species, S. zimugang, sp. nov., is not included in any species groups, but forms a sister lineage to the bispina- and unispina-groups. These results elucidate a high species diversity of Songthela in a small area and demonstrate that integrating morphology with COI-based species delimitation is fast and cost-effective in delimiting species boundaries. http://zoobank.org/urn:lsid:zoobank.org:pub:AF0F5B31-AFAF-4861-9844-445AE8678B67
Collapse
|
19
|
Derkarabetian S, Paquin P, Reddell J, Hedin M. Conservation genomics of federally endangered Texella harvester species (Arachnida, Opiliones, Phalangodidae) from cave and karst habitats of central Texas. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01427-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Li F, Xu X, Zhang Z, Liu F, Yang Z, Li D. Multilocus species delimitation and phylogeny of the genus
Calommata
(Araneae, Atypidae) in southern China. ZOOL SCR 2022. [DOI: 10.1111/zsc.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fan Li
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Xin Xu
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
- College of Life Sciences Hunan Normal University Changsha China
| | - Zengtao Zhang
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
| | - Fengxiang Liu
- Centre for Behavioral Ecology & Evolution College of Life Sciences Hubei University Wuhan China
| | - Zizhong Yang
- National‐Local Joint Engineering Research Center of Entomoceutics Dali University Dali China
| | - Daiqin Li
- Department of Biological Sciences National University of Singapore Singapore Singapore
| |
Collapse
|
21
|
|
22
|
Bamberger S, Xu J, Hausdorf B. Evaluating Species Delimitation Methods in Radiations: The Land Snail Albinaria cretensis Complex on Crete. Syst Biol 2021; 71:439-460. [PMID: 34181027 DOI: 10.1093/sysbio/syab050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 01/25/2023] Open
Abstract
Delimiting species in radiations is notoriously difficult because of the small differences between the incipient species, the star-like tree with short branches between species, incomplete lineage sorting, and the possibility of introgression between several of the incipient species. Next generation sequencing data may help to overcome some of these problems. We evaluated methods for species delimitation based on genome-wide markers in a land snail radiation on Crete. Species delimitation in the Albinaria cretensis group was based exclusively on shell characters until now and resulted in classifications distinguishing 3-9 species. We generated sequences of 4270 loci for 140 specimens of the Albinaria cretensis group from 48 populations by double-digest restriction site-associated DNA sequencing. We evaluated three methods for species discovery. The multispecies coalescent approach implemented in the program Bayesian Phylogenetics and Phylogeography resulted in a drastic overestimating of the number of species, whereas Gaussian clustering resulted in an overlumping. Primary species hypotheses based on the maximum percentage of the genome of the individuals derived from ancestral populations as estimated with the program ADMIXTURE moderately overestimated the number of species, but this was the only approach that provided information about gene flow between groups. Two of the methods for species validation that we applied, BFD* and delimitR, resulted in an acceptance of almost all primary species hypotheses, even such based on arbitrary subdivisions of hypotheses based on ADMIXTURE. In contrast, secondary species hypotheses, resulting from an evaluation of primary species hypotheses based on ADMIXTURE with isolation by distance tests, approached the morphological classification, but also uncovered two cryptic species and indicated that some of the previously delimited units should be combined. Thus, we recommend this combination of approaches that provided more detailed insights in the distinctness of barriers between the taxa of a species complex and the spatial distribution of admixture between them than the other methods. The recognition and delimitation of undersampled species remained a major challenge.
Collapse
Affiliation(s)
- Sonja Bamberger
- Center of Natural History, Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Jie Xu
- Center of Natural History, Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Bernhard Hausdorf
- Center of Natural History, Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
23
|
Sukumaran J, Holder MT, Knowles LL. Incorporating the speciation process into species delimitation. PLoS Comput Biol 2021; 17:e1008924. [PMID: 33983918 PMCID: PMC8118268 DOI: 10.1371/journal.pcbi.1008924] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
The "multispecies" coalescent (MSC) model that underlies many genomic species-delimitation approaches is problematic because it does not distinguish between genetic structure associated with species versus that of populations within species. Consequently, as both the genomic and spatial resolution of data increases, a proliferation of artifactual species results as within-species population lineages, detected due to restrictions in gene flow, are identified as distinct species. The toll of this extends beyond systematic studies, getting magnified across the many disciplines that rely upon an accurate framework of identified species. Here we present the first of a new class of approaches that addresses this issue by incorporating an extended speciation process for species delimitation. We model the formation of population lineages and their subsequent development into independent species as separate processes and provide for a way to incorporate current understanding of the species boundaries in the system through specification of species identities of a subset of population lineages. As a result, species boundaries and within-species lineages boundaries can be discriminated across the entire system, and species identities can be assigned to the remaining lineages of unknown affinities with quantified probabilities. In addition to the identification of species units in nature, the primary goal of species delimitation, the incorporation of a speciation model also allows us insights into the links between population and species-level processes. By explicitly accounting for restrictions in gene flow not only between, but also within, species, we also address the limits of genetic data for delimiting species. Specifically, while genetic data alone is not sufficient for accurate delimitation, when considered in conjunction with other information we are able to not only learn about species boundaries, but also about the tempo of the speciation process itself.
Collapse
Affiliation(s)
- Jeet Sukumaran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Mark T. Holder
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Mitchell JK, Garrido-Benavent I, Quijada L, Pfister DH. Sareomycetes: more diverse than meets the eye. IMA Fungus 2021; 12:6. [PMID: 33726866 PMCID: PMC7961326 DOI: 10.1186/s43008-021-00056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
Since its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction.
Collapse
Affiliation(s)
- James K Mitchell
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA.
| | - Isaac Garrido-Benavent
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE) & Dept. Botànica i Geologia, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Luis Quijada
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
25
|
Rix MG, Wilson JD, Huey JA, Hillyer MJ, Gruber K, Harvey MS. Diversification of the mygalomorph spider genus Aname (Araneae: Anamidae) across the Australian arid zone: Tracing the evolution and biogeography of a continent-wide radiation. Mol Phylogenet Evol 2021; 160:107127. [PMID: 33667632 DOI: 10.1016/j.ympev.2021.107127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
The assembly of the Australian arid zone biota has long fascinated biogeographers. Covering over two-thirds of the continent, Australia's vast arid zone biome is home to a distinctive fauna and flora, including numerous lineages which have diversified since the Eocene. Tracing the origins and speciation history of these arid zone taxa has been an ongoing endeavour since the advent of molecular phylogenetics, and an increasing number of studies on invertebrate animals are beginning to complement a rich history of research on vertebrate and plant taxa. In this study, we apply continent-wide genetic sampling and one of the largest phylogenetic data matrices yet assembled for a genus of Australian spiders, to reconstruct the phylogeny and biogeographic history of the open-holed trapdoor spider genus Aname L. Koch, 1873. This highly diverse lineage of Australian mygalomorph spiders has a distribution covering the majority of Australia west of the Great Dividing Range, but apparently excluding the high rainfall zones of eastern Australia and Tasmania. Original and legacy sequences were obtained for three mtDNA and four nuDNA markers from 174 taxa in seven genera, including 150 Aname specimen terminals belonging to 102 species-level operational taxonomic units, sampled from 32 bioregions across Australia. Reconstruction of the phylogeny and biogeographic history of Aname revealed three radiations (Tropical, Temperate-Eastern and Continental), which could be further broken into eight major inclusive clades. Ancestral area reconstruction revealed the Pilbara, Monsoon Tropics and Mid-West to be important ancestral areas for the genus Aname and its closest relatives, with the origin of Aname itself inferred in the Pilbara bioregion. From these origins in the arid north-west of Australia, our study found evidence for a series of subsequent biome transitions in separate lineages, with at least eight tertiary incursions back into the arid zone from more mesic tropical, temperate or eastern biomes, and only two major clades which experienced widespread (primary) in situ diversification within the arid zone. Based on our phylogenetic results, and results from independent legacy divergence dating studies, we further reveal the importance of climate-driven biotic change in the Miocene and Pliocene in shaping the distribution and composition of the Australian arid zone biota, and the value of continent-wide studies in revealing potentially complex patterns of arid zone diversification in dispersal-limited invertebrate taxa.
Collapse
Affiliation(s)
- Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia; Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia.
| | - Jeremy D Wilson
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia; Division of Arachnology, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina
| | - Joel A Huey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mia J Hillyer
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia
| | - Karl Gruber
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mark S Harvey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
26
|
Diggins CA, Ford WM. Effects of Surveying for the Federally Endangered Spruce-Fir Moss Spider (Microhexura montivaga Crosby & Bishop) on its Bryophyte Habitat. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Corinne A. Diggins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061
| | - W. Mark Ford
- US Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Blacksburg, VA 24061
| |
Collapse
|
27
|
Opatova V, Hamilton CA, Hedin M, De Oca LM, Král J, Bond JE. Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic Scale Data. Syst Biol 2021; 69:671-707. [PMID: 31841157 DOI: 10.1093/sysbio/syz064] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
The infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3000 nominal species. This ancient group has a worldwide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel-web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here, we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades. [Biogeography; molecular clocks; phylogenomics; spider web foraging; taxonomy.].
Collapse
Affiliation(s)
- Vera Opatova
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow ID 83844-2329, USA
| | - Marshal Hedin
- Department of Biology, LSN 204E, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Laura Montes De Oca
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Jiři Král
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, Prague 2 128 44, Czech Republic
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
28
|
Hosegood J, Humble E, Ogden R, de Bruyn M, Creer S, Stevens GMW, Abudaya M, Bassos-Hull K, Bonfil R, Fernando D, Foote AD, Hipperson H, Jabado RW, Kaden J, Moazzam M, Peel LR, Pollett S, Ponzo A, Poortvliet M, Salah J, Senn H, Stewart JD, Wintner S, Carvalho G. Phylogenomics and species delimitation for effective conservation of manta and devil rays. Mol Ecol 2020; 29:4783-4796. [PMID: 33164287 DOI: 10.1111/mec.15683] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Practical biodiversity conservation relies on delineation of biologically meaningful units. Manta and devil rays (Mobulidae) are threatened worldwide, yet morphological similarities and a succession of recent taxonomic changes impede the development of an effective conservation strategy. Here, we generate genome-wide single nucleotide polymorphism (SNP) data from a geographically and taxonomically representative set of manta and devil ray samples to reconstruct phylogenetic relationships and evaluate species boundaries under the general lineage concept. We show that nominal species units supported by alternative data sources constitute independently evolving lineages, and find robust evidence for a putative new species of manta ray in the Gulf of Mexico. Additionally, we uncover substantial incomplete lineage sorting indicating that rapid speciation together with standing variation in ancestral populations has driven phylogenetic uncertainty within Mobulidae. Finally, we detect cryptic diversity in geographically distinct populations, demonstrating that management below the species level may be warranted in certain species. Overall, our study provides a framework for molecular genetic species delimitation that is relevant to wide-ranging taxa of conservation concern, and highlights the potential for genomic data to support effective management, conservation and law enforcement strategies.
Collapse
Affiliation(s)
- Jane Hosegood
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK.,The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK.,NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Emily Humble
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK.,Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK.,TRACE Wildlife Forensics Network, Edinburgh, UK
| | - Mark de Bruyn
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| | - Guy M W Stevens
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK
| | | | - Kim Bassos-Hull
- Mote Marine Laboratory, The Center for Shark Research, Sarasota, FL, USA
| | | | - Daniel Fernando
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK.,Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.,Blue Resources Trust, Colombo, Sri Lanka
| | - Andrew D Foote
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK.,Department of Natural History, Norwegian University of Science and Technology (NTNU), University Museum, Trondheim, Norway
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Jennifer Kaden
- RZSS WildGenes Lab, Royal Zoological Society of Scotland, Edinburgh, UK
| | | | - Lauren R Peel
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,The Australian Institute of Marine Science, Crawley, WA, Australia.,Save Our Seas Foundation - D'Arros Research Centre, Geneva, Switzerland
| | - Stephen Pollett
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK
| | - Alessandro Ponzo
- Large Marine Vertebrates Research Institute Philippines, Jagna, Philippines
| | | | - Jehad Salah
- Ministry of Agriculture Directorate General of Fisheries, Gaza City, Palestine
| | - Helen Senn
- RZSS WildGenes Lab, Royal Zoological Society of Scotland, Edinburgh, UK
| | - Joshua D Stewart
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset, DT2 0NT, UK
| | - Sabine Wintner
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, South Africa.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, UK
| |
Collapse
|
29
|
Mussmann SM, Douglas MR, Oakey DD, Douglas ME. Defining relictual biodiversity: Conservation units in speckled dace (Leuciscidae: Rhinichthys osculus) of the Greater Death Valley ecosystem. Ecol Evol 2020; 10:10798-10817. [PMID: 33072297 PMCID: PMC7548178 DOI: 10.1002/ece3.6736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The tips in the tree of life serve as foci for conservation and management, yet clear delimitations are masked by inherent variance at the species-population interface. Analyses using thousands of nuclear loci can potentially sort inconsistencies, yet standard categories applied to this parsing are themselves potentially conflicting and/or subjective [e.g., DPS (distinct population segments); DUs (Diagnosable Units-Canada); MUs (management units); SSP (subspecies); ESUs (Evolutionarily Significant Units); and UIEUs (uniquely identified evolutionary units)]. One potential solution for consistent categorization is to create a comparative framework by accumulating statistical results from independent studies and evaluating congruence among data sets. Our study illustrates this approach in speckled dace (Leuciscidae: Rhinichthys osculus) endemic to two basins (Owens and Amargosa) in the Death Valley ecosystem. These fish persist in the Mojave Desert as isolated Plio-Pleistocene relicts and are of conservation concern, but lack formal taxonomic descriptions/designations. Double digest RAD (ddRAD) methods identified 14,355 SNP loci across 10 populations (N = 140). Species delimitation analyses [multispecies coalescent (MSC) and unsupervised machine learning (UML)] delineated four putative ESUs. F ST outlier loci (N = 106) were juxtaposed to uncover the potential for localized adaptations. We detected one hybrid population that resulted from upstream reconnection of habitat following contemporary pluvial periods, whereas remaining populations represent relics of ancient tectonism within geographically isolated springs and groundwater-fed streams. Our study offers three salient conclusions: a blueprint for a multifaceted delimitation of conservation units; a proposed mechanism by which criteria for intraspecific biodiversity can be potentially standardized; and a strong argument for the proactive management of critically endangered Death Valley ecosystem fishes.
Collapse
Affiliation(s)
- Steven M. Mussmann
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Marlis R. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - David D. Oakey
- School of Life SciencesArizona State UniversityTempeAZUSA
- Present address:
Arizona State Veteran HomePhoenixAZUSA
| | - Michael E. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
30
|
From micro- to macroevolution: insights from a Neotropical bromeliad with high population genetic structure adapted to rock outcrops. Heredity (Edinb) 2020; 125:353-370. [PMID: 32681156 DOI: 10.1038/s41437-020-0342-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Geographic isolation and reduced population sizes can lead to local extinction, low efficacy of selection and decreased speciation. However, population differentiation is an essential step of biological diversification. In allopatric speciation, geographically isolated populations differentiate and persist until the evolution of reproductive isolation and ecological divergence completes the speciation process. Pitcairnia flammea allows us to study the evolutionary consequences of habitat fragmentation on naturally disjoint rock-outcrop species from the Brazilian Atlantic Rainforest (BAF). Our main results showed low-to-moderate genetic diversity within populations, and deep population structuring caused by limited gene flow, low connectivity, genetic drift and inbreeding of long-term isolation and persistence of rock-outcrop populations throughout Quaternary climatic oscillations. Bayesian phylogenetic and model-based clustering analyses found no clear northern and southern phylogeographic structure commonly reported for many BAF organisms. Although we found two main lineages diverging by ~2 Mya during the early Pleistocene, species' delimitation analysis assigned most of the populations as independent evolving entities, suggesting an important role of disjoint rock outcrops in promoting high endemism in this rich biome. Lastly, we detected limited gene flow in sympatric populations although some hybridization and introgression were observed, suggesting a continuous speciation process in this species complex. Our data not only inform us about the extensive differentiation and limited gene flow found among Pitcairnia flammea species complex, but they also contain information about the mechanisms that shape the genetic architecture of small and fragmented populations of isolated rock outcrop of recently radiated plants.
Collapse
|
31
|
Xu X, Kuntner M, Bond JE, Ono H, Ho SYW, Liu F, Yu L, Li D. Molecular species delimitation in the primitively segmented spider genus Heptathela endemic to Japanese islands. Mol Phylogenet Evol 2020; 151:106900. [PMID: 32599078 DOI: 10.1016/j.ympev.2020.106900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
Determining species boundaries forms an important foundation for biological research. However, the results of molecular species delimitation can vary with the data sets and methods that are used. Here we use a two-step approach to delimit species in the genus Heptathela, a group of primitively segmented trapdoor spiders that are endemic to Japanese islands. Morphological evidence suggests the existence of 19 species in the genus. We tested this initial species hypothesis by using six molecular species-delimitation methods to analyse 180 mitochondrial COI sequences of Heptathela sampled from across the known range of the genus. We then conducted a set of more focused analyses by sampling additional genetic markers from the subset of taxa that were inconsistently delimited by the single-locus analyses of mitochondrial DNA. Multilocus species delimitation was performed using two Bayesian approaches based on the multispecies coalescent. Our approach identified 20 putative species among the 180 sampled individuals of Heptathela. We suggest that our two-step approach provides an efficient strategy for delimiting species while minimizing costs and computational time.
Collapse
Affiliation(s)
- Xin Xu
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Matjaž Kuntner
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China; Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia; Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Ljubljana, Slovenia; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California at Davis, Davis, CA, USA
| | - Hirotsugu Ono
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki-ken 305-0005, Japan
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Fengxiang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Long Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Newton LG, Starrett J, Hendrixson BE, Derkarabetian S, Bond JE. Integrative species delimitation reveals cryptic diversity in the southern Appalachian Antrodiaetus unicolor (Araneae: Antrodiaetidae) species complex. Mol Ecol 2020; 29:2269-2287. [PMID: 32452095 DOI: 10.1111/mec.15483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure, principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large-scale ecological data for niche-based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic-scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.
Collapse
Affiliation(s)
- Lacie G Newton
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - James Starrett
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | | | - Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| |
Collapse
|
33
|
Chambers EA, Hillis DM. The Multispecies Coalescent Over-Splits Species in the Case of Geographically Widespread Taxa. Syst Biol 2020; 69:184-193. [PMID: 31180508 DOI: 10.1093/sysbio/syz042] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/14/2022] Open
Abstract
Many recent species delimitation studies rely exclusively on limited analyses of genetic data analyzed under the multispecies coalescent (MSC) model, and results from these studies often are regarded as conclusive support for taxonomic changes. However, most MSC-based species delimitation methods have well-known and often unmet assumptions. Uncritical application of these genetic-based approaches (without due consideration of sampling design, the effects of a priori group designations, isolation by distance, cytoplasmic-nuclear mismatch, and population structure) can lead to over-splitting of species. Here, we argue that in many common biological scenarios, researchers must be particularly cautious regarding these limitations, especially in cases of well-studied, geographically variable, and parapatrically distributed species complexes. We consider these points with respect to a historically controversial species group, the American milksnakes (Lampropeltis triangulum complex), using genetic data from a recent analysis (Ruane et al. 2014). We show that over-reliance on the program Bayesian Phylogenetics and Phylogeography, without adequate consideration of its assumptions and of sampling limitations, resulted in over-splitting of species in this study. Several of the hypothesized species of milksnakes instead appear to represent arbitrary slices of continuous geographic clines. We conclude that the best available evidence supports three, rather than seven, species within this complex. More generally, we recommend that coalescent-based species delimitation studies incorporate thorough analyses of geographic variation and carefully examine putative contact zones among delimited species before making taxonomic changes.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712, USA
| | - David M Hillis
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
34
|
Harvey MS, Rix MG, Hillyer MJ, Huey JA. The systematics and phylogenetic position of the troglobitic Australian spider genus Troglodiplura (Araneae : Mygalomorphae), with a new classification for Anamidae. INVERTEBR SYST 2020. [DOI: 10.1071/is20034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compared with araneomorph spiders, relatively few mygalomorph spiders have evolved an obligate existence in subterranean habitats. The trapdoor spider genus Troglodiplura Main, 1969 and its sole named species T. lowryi Main, 1969 is endemic to caves on the Nullarbor Plain of southern Australia, and is one of the world’s most troglomorphic mygalomorph spiders. However, its systematic position has proved to be difficult to ascertain, largely due to a lack of preserved adults, with all museum specimens represented only by cuticular fragments, degraded specimens or preserved juveniles. The systematic placement of Troglodiplura has changed since it was first described as a member of the Dipluridae, with later attribution to Nemesiidae and then back to Dipluridae. The most recent hypothesis specifically allied Troglodiplura with the Neotropical subfamily Diplurinae, and therefore was assumed to have no close living relatives in Australia. We obtained mitochondrial sequence data from one specimen of Troglodiplura to test these two competing hypotheses, and found that Troglodiplura is a member of the family Anamidae (which was recently separated from the Nemesiidae). We also reassess the morphology of the cuticular fragments of specimens from several different caves, and hypothesise that along with T. lowryi there are four new troglobitic species, here named T. beirutpakbarai Harvey & Rix, T. challeni Harvey & Rix, T. harrisi Harvey & Rix, and T. samankunani Harvey & Rix, each of which is restricted to a single cave system and therefore severely threatened by changing environmental conditions within the caves. The first descriptions and illustrations of the female spermathecae of Troglodiplura are provided. The family Anamidae is further divided into two subfamilies, with the Anaminae Simon containing Aname L. Koch, 1873, Hesperonatalius Castalanelli, Huey, Hillyer & Harvey, 2017, Kwonkan Main, 1983, Swolnpes Main & Framenau, 2009 and Troglodiplura, and the Teylinae Main including Chenistonia Hogg, 1901, Namea Raven, 1984, Proshermacha Simon, 1909, Teyl Main, 1975 and Teyloides Main, 1985.
ZooBank Registration: http://zoobank.org/References/2BE2B429-0998-4AFE-9381-B30BDC391E9C
Collapse
|
35
|
Rix MG, Wilson JD, Harvey MS. First phylogenetic assessment and taxonomic synopsis of the open-holed trapdoor spider genus Namea (Mygalomorphae: Anamidae): a highly diverse mygalomorph lineage from Australia’s tropical eastern rainforests. INVERTEBR SYST 2020. [DOI: 10.1071/is20004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tropical and subtropical rainforests of Australia’s eastern mesic zone have given rise to a complex and highly diverse biota. Numerous old endemic, niche-conserved groups persist in the montane rainforests south of Cooktown, where concepts of serial allopatric speciation resulting from the formation of xeric interzones have largely driven our biogeographic understanding of the region. Among invertebrate taxa, studies on less vagile arachnid lineages now complement extensive research on vertebrate taxa, and phylogenetic studies on mygalomorph spiders in particular are revealing significant insights about the biogeographic history of the Australian continent since the Eocene. One mygalomorph lineage entirely endemic to Australia’s tropical and subtropical eastern rainforests is the open-holed trapdoor spider genus Namea Raven, 1984 (family Anamidae). We explore, for the first time, the phylogenetic diversity and systematics of this group of spiders, with the aims of understanding patterns of rainforest diversity in Namea, of exploring the relative roles of lineage overlap versus in situ speciation in driving predicted high levels of congeneric sympatry, and of broadly reconciling morphology with evolutionary history. Original and legacy sequences were obtained for three mtDNA and four nuDNA markers from 151 specimens, including 82 specimens of Namea. We recovered a monophyletic genus Namea sister to the genus Teyl Main, 1975, and monophyletic species clades corresponding to 30 morphospecies OTUs, including 22 OTUs nested within three main species-complex lineages. Remarkable levels of sympatry for a single genus of mygalomorph spiders were revealed in rainforest habitats, with upland subtropical rainforests in south-eastern Queensland often home to multiple (up to six) congeners of usually disparate phylogenetic affinity living in direct sympatry or close parapatry, likely the result of simultaneous allopatric speciation in already co-occurring lineages, and more recent dispersal in a minority of taxa. In situ speciation, in contrast, appears to have played a relatively minor role in generating sympatric diversity within rainforest ‘islands’. At the population level, changes in the shape and spination of the male first leg relative to evolutionary history reveal subtle but consistent interspecific morphological shifts in the context of otherwise intraspecific variation, and understanding this morphological variance provides a useful framework for future taxonomic monography. Based on the phylogenetic results, we further provide a detailed taxonomic synopsis of the genus Namea, formally diagnosing three main species-complexes (the brisbanensis-complex, the dahmsi-complex and the jimna-complex), re-illustrating males of all 15 described species, and providing images of live spiders and burrows where available. In doing so, we reveal a huge undescribed diversity of Namea species from tropical and subtropical rainforest habitats, and an old endemic fauna that is beginning to shed light on more complex patterns of rainforest biogeography.
Collapse
|
36
|
Derkarabetian S, Castillo S, Koo PK, Ovchinnikov S, Hedin M. A demonstration of unsupervised machine learning in species delimitation. Mol Phylogenet Evol 2019; 139:106562. [PMID: 31323334 PMCID: PMC6880864 DOI: 10.1016/j.ympev.2019.106562] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023]
Abstract
One major challenge to delimiting species with genetic data is successfully differentiating population structure from species-level divergence, an issue exacerbated in taxa inhabiting naturally fragmented habitats. Many fields of science are now using machine learning, and in evolutionary biology supervised machine learning has recently been used to infer species boundaries. These supervised methods require training data with associated labels. Conversely, unsupervised machine learning (UML) uses inherent data structure and does not require user-specified training labels, potentially providing more objectivity in species delimitation. In the context of integrative taxonomy, we demonstrate the utility of three UML approaches (random forests, variational autoencoders, t-distributed stochastic neighbor embedding) for species delimitation in an arachnid taxon with high population genetic structure (Opiliones, Laniatores, Metanonychus). We find that UML approaches successfully cluster samples according to species-level divergences and not high levels of population structure, while model-based validation methods severely over-split putative species. UML offers intuitive data visualization in two-dimensional space, the ability to accommodate various data types, and has potential in many areas of systematic and evolutionary biology. We argue that machine learning methods are ideally suited for species delimitation and may perform well in many natural systems and across taxa with diverse biological characteristics.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States; Department of Biology, San Diego State University, San Diego, CA 92182, United States; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, United States.
| | - Stephanie Castillo
- Department of Biology, San Diego State University, San Diego, CA 92182, United States; Department of Entomology, University of California, Riverside, Riverside, CA 92521, United States
| | - Peter K Koo
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, United States
| | - Sergey Ovchinnikov
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, United States
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
37
|
Wagner F, Ott T, Zimmer C, Reichhart V, Vogt R, Oberprieler C. 'At the crossroads towards polyploidy': genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). THE NEW PHYTOLOGIST 2019; 223:2039-2053. [PMID: 30851196 DOI: 10.1111/nph.15784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 05/23/2023]
Abstract
Polyploidy plays a paramount role in phytodiversity, but the causes of this evolutionary pathway require further study. Here, we use phylogenetic methods to examine possible polyploidy-promoting factors by comparing diploid representatives of the comprehensive European polyploid complex Leucanthemum with members of its strictly diploid North African counterpart Rhodanthemum. We investigate genetic divergence and gene flow among all diploid lineages of both genera to evaluate the role of genomic differentiation and hybridization for polyploid speciation. To test whether hybridization in Leucanthemum has been triggered by the geological conditions during its diversification, we additionally generate a time-calibrated phylogeny of 46 species of the subtribe Leucantheminae. Leucanthemum shows a significantly higher genetic divergence and hybridization signal among diploid lineages compared with Rhodanthemum, in spite of a similar crown age and diversification pattern during the Quaternary. Our study demonstrates the importance of genetic differentiation among diploid progenitors and their concurrent affinity for natural hybridization for the formation of a polyploid complex. Furthermore, the role of climate-induced range overlaps on hybridization and polyploid speciation during the Quaternary is discussed.
Collapse
Affiliation(s)
- Florian Wagner
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Tankred Ott
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Claudia Zimmer
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Verena Reichhart
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Robert Vogt
- Botanic Garden & Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, D-14191, Berlin, Germany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
38
|
Ferretti NE, Soresi DS, González A, Arnedo M. An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1643423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nelson E. Ferretti
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR-CONICET-UNS), San Juan 670, Bahía Blanca, 8000, Buenos Aires, Argentina
| | - Daniela S. Soresi
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET-UNS), Camino La Carrindanga Km 7, Bahía Blanca, 8000, Buenos Aires, Argentina
| | - Alda González
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-CONICET-La Plata), Boulevard 120 s/n (e/60-64), La Plata, 1900, Buenos Aires, Argentina
| | - Miquel Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| |
Collapse
|
39
|
Different species or genetically divergent populations? Integrative species delimitation of the Primulina hochiensis complex from isolated karst habitats. Mol Phylogenet Evol 2019; 132:219-231. [DOI: 10.1016/j.ympev.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/15/2022]
|
40
|
Using integrative taxonomy and multispecies coalescent models for phylogeny reconstruction and species delimitation within the “Nastanthus–Gamocarpha” clade (Calyceraceae). Mol Phylogenet Evol 2019; 130:211-226. [DOI: 10.1016/j.ympev.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022]
|
41
|
Wilson JD, Rix MG, Raven RJ, Schmidt DJ, Hughes JM. Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae : Mygalomorphae : Idiopidae): four new species distinguished by their burrow entrance architecture. INVERTEBR SYST 2019. [DOI: 10.1071/is18014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Within the spiny trapdoor spider genus Euoplos Rainbow exists a group of species from south-eastern Queensland that create unusual ‘palisade’ burrow entrances. Despite their intriguing burrows, the group was only recently circumscribed, and all species within it were undescribed. In this study, by undertaking a molecular phylogenetic analysis of two mitochondrial markers and seven nuclear markers, we confirm that the palisade trapdoor spiders, here formally named the ‘turrificus-group’, are monophyletic. We further recognise four species based on morphological, molecular and behavioural characters: E. crenatus, sp. nov., E. goomboorian, sp. nov., E. thynnearum, sp. nov. and E. turrificus, sp. nov. Morphological taxonomic data for each species are presented alongside information on their distribution, habitat preferences and burrow architecture. A key to species within the turrificus-group is also provided. The unusual burrow entrances of these spiders, which project out from the surrounding substrate, are found to exhibit structural autapomorphies, which allow species-level identification. Consequently, we include features of burrow architecture in our key and species diagnoses. This provides a non-intrusive method for distinguishing species in the field. Finally, we conclude that all species within the turrificus-group are likely to represent short-range endemic taxa.
http://zoobank.org/urn:lsid:zoobank.org:pub:F2E042DC-DA14-4751-A48B-A367ABC272D9
Collapse
|
42
|
Caterino MS, Langton-Myers SS. Long-term population persistence of flightless weevils (Eurhoptus pyriformis) across old- and second-growth forests patches in southern Appalachia. BMC Evol Biol 2018; 18:165. [PMID: 30413148 PMCID: PMC6234790 DOI: 10.1186/s12862-018-1278-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022] Open
Abstract
Background Southern Appalachian forests are dominated by second-growth vegetation following decades of intensive forestry and agricultural use, although some old-growth patches remain. While it’s been shown that second-growth areas may exhibit comparable species richness to old-growth in the area, the extent to which populations of arthropods in second-growth areas have persisted vs. recolonized from other areas remains unexamined. The implications for conservation of both classes of forest are significant. Here we analyze population diversity and relatedness across five old-growth and five second-growth populations of flightless, leaf litter-inhabiting beetles in the genus Eurhoptus (Coleoptera: Curculionidae: Cryptorhynchinae). Our main goal is asking whether second-growth areas show diminished diversity and/or signals of recolonization from old-growth sources. Results Population genetic and phylogenetic analyses do not reveal any consistent differences in diversity between the old-growth and second-growth populations examined. Some second-growth populations retain substantial genetic diversity, while some old-growth populations appear relatively depauperate. There is no phylogenetic indication that second-growth populations have recolonized from old-growth source populations. Conclusions Most populations contain substantial and unique genetic diversity indicating long-term persistence in the majority of sites. The results support substantial resilience in second-growth populations, though the geographic scale of sampling may have hindered detection of recolonization patterns. Broad scale phylogeographic patterns reveal a deep break across the French Broad River basin, as has been reported in several other taxa of limited dispersal abilities. In Eurhoptus this break dates to ~ 2–6 Ma ago, on the older end of the range of previously estimated dates. Electronic supplementary material The online version of this article (10.1186/s12862-018-1278-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael S Caterino
- Department of Plant and Environmental Sciences, 277 Poole Agricultural Center, Clemson University, Clemson, SC, 29634-0310, USA.
| | | |
Collapse
|
43
|
Godwin RL, Opatova V, Garrison NL, Hamilton CA, Bond JE. Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using Anchored Hybrid Enrichment, with a description of the family, Halonoproctidae Pocock 1901. Mol Phylogenet Evol 2018; 126:303-313. [PMID: 29656103 DOI: 10.1016/j.ympev.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
The mygalomorph family Ctenizidae has a world-wide distribution and currently contains nine genera and 135 species. However, the monophyly of this group has long been questioned on both morphological and molecular grounds. Here, we use Anchored Hybrid Enrichment (AHE) to gather hundreds of loci from across the genome for reconstructing the phylogenetic relationships among the nine genera and test the monophyly of the family. We also reconstruct the possible ancestral ranges of the most inclusive clade recovered. Using AHE, we generate a supermatrix of 565 loci and 115,209 bp for 27 individuals. For the first time, analyses using all nine genera produce results definitively establishing the non-monophyly of Ctenizidae. A lineage formed exclusively by representatives of South African Stasimopus was placed as the sister group to the remaining taxa in the tree, and the Mediterranean Cteniza and Cyrtocarenum were recovered with high support as sister to exemplars of Euctenizidae, Migidae, and Idiopidae. All the remaining genera-Bothriocyrtum, Conothele, Cyclocosmia, Hebestatis, Latouchia, and Ummidia-share a common ancestor. Based on these results, we formally elevate this clade to the level of family. Our results definitively establish both the non-monophyly of the Ctenizidae and non-validity of the subfamilies Ummidiinae and Ctenizinae. In order to establish the placement of the remaining three ctenizid genera, Cteniza, Cyrtocarenum, and Stasimopus, thorough analyses within the context of a complete mygalomorph phylogenetic framework are needed. We formally describe the family Halonoproctidae Pocock 1901 and infer that the family's most recent common ancestor was likely distributed in western North America and Asia.
Collapse
Affiliation(s)
- Rebecca L Godwin
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| | - Vera Opatova
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| | - Nicole L Garrison
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| | - Chris A Hamilton
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Jason E Bond
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
44
|
Barley AJ, Brown JM, Thomson RC. Impact of Model Violations on the Inference of Species Boundaries Under the Multispecies Coalescent. Syst Biol 2018; 67:269-284. [PMID: 28945903 DOI: 10.1093/sysbio/syx073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The use of genetic data for identifying species-level lineages across the tree of life has received increasing attention in the field of systematics over the past decade. The multispecies coalescent model provides a framework for understanding the process of lineage divergence and has become widely adopted for delimiting species. However, because these studies lack an explicit assessment of model fit, in many cases, the accuracy of the inferred species boundaries are unknown. This is concerning given the large amount of empirical data and theory that highlight the complexity of the speciation process. Here, we seek to fill this gap by using simulation to characterize the sensitivity of inference under the multispecies coalescent (MSC) to several violations of model assumptions thought to be common in empirical data. We also assess the fit of the MSC model to empirical data in the context of species delimitation. Our results show substantial variation in model fit across data sets. Posterior predictive tests find the poorest model performance in data sets that were hypothesized to be impacted by model violations. We also show that while the inferences assuming the MSC are robust to minor model violations, such inferences can be biased under some biologically plausible scenarios. Taken together, these results suggest that researchers can identify individual data sets in which species delimitation under the MSC is likely to be problematic, thereby highlighting the cases where additional lines of evidence to identify species boundaries are particularly important to collect. Our study supports a growing body of work highlighting the importance of model checking in phylogenetics, and the usefulness of tailoring tests of model fit to assess the reliability of particular inferences. [Populations structure, gene flow, demographic changes, posterior prediction, simulation, genetics.].
Collapse
Affiliation(s)
- Anthony J Barley
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Robert C Thomson
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA
| |
Collapse
|
45
|
Harvey MS, Hillyer MJ, Main BY, Moulds TA, Raven RJ, Rix MG, Vink CJ, Huey JA. Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zlx111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY, USA
- Department of Entomology, California Academy of Sciences, San Francisco, CA, USA
| | - Mia J Hillyer
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
| | - Barbara York Main
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Timothy A Moulds
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
| | - Robert J Raven
- Biodiversity and Geosciences, Queensland Museum, South Brisbane, Queensland, Australia
| | - Michael G Rix
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
- Biodiversity and Geosciences, Queensland Museum, South Brisbane, Queensland, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cor J Vink
- Canterbury Museum, Rolleston Avenue, Christchurch, New Zeal
| | - Joel A Huey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
46
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
47
|
Wilson JD, Hughes JM, Raven RJ, Rix MG, Schmidt DJ. Spiny trapdoor spiders (Euoplos) of eastern Australia: Broadly sympatric clades are differentiated by burrow architecture and male morphology. Mol Phylogenet Evol 2018; 122:157-165. [PMID: 29428510 DOI: 10.1016/j.ympev.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/27/2022]
Abstract
Spiders of the infraorder Mygalomorphae are fast becoming model organisms for the study of biogeography and speciation. However, these spiders can be difficult to study in the absence of fundamental life history information. In particular, their cryptic nature hinders comprehensive sampling, and linking males with conspecific females can be challenging. Recently discovered differences in burrow entrance architecture and male morphology indicated that these challenges may have impeded our understanding of the trapdoor spider genus Euoplos in Australia's eastern mesic zone. We investigated the evolutionary significance of these discoveries using a multi-locus phylogenetic approach. Our results revealed the existence of a second, previously undocumented, lineage of Euoplos in the eastern mesic zone. This new lineage occurs in sympatry with a lineage previously known from the region, and the two are consistently divergent in their burrow entrance architecture and male morphology, revealing the suitability of these characters for use in phylogenetic studies. Divergent burrow entrance architecture and observed differences in microhabitat preferences are suggested to facilitate sympatry and syntopy between the lineages. Finally, by investigating male morphology and plotting it onto the phylogeny, we revealed that the majority of Euoplos species remain undescribed, and that males of an unnamed species from the newly discovered lineage had historically been linked, erroneously, to a described species from the opposite lineage. This paper clarifies the evolutionary relationships underlying life history diversity in the Euoplos of eastern Australia, and provides a foundation for urgently needed taxonomic revision of this genus.
Collapse
Affiliation(s)
- Jeremy D Wilson
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan, QLD 4111, Australia.
| | - Jane M Hughes
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Robert J Raven
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Daniel J Schmidt
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
48
|
Starrett J, Hayashi CY, Derkarabetian S, Hedin M. Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada. Mol Phylogenet Evol 2018; 118:403-413. [DOI: 10.1016/j.ympev.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
49
|
Xu X, Liu F, Ono H, Chen J, Kuntner M, Li D. Targeted sampling in Ryukyus facilitates species delimitation of the primitively segmented spider genus Ryuthela (Araneae: Mesothelae: Liphistiidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Afonso Silva AC, Santos N, Ogilvie HA, Moritz C. Validation and description of two new north-western Australian Rainbow skinks with multispecies coalescent methods and morphology. PeerJ 2017; 5:e3724. [PMID: 28875076 PMCID: PMC5580384 DOI: 10.7717/peerj.3724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
While methods for genetic species delimitation have noticeably improved in the last decade, this remains a work in progress. Ideally, model based approaches should be applied and considered jointly with other lines of evidence, primarily morphology and geography, in an integrative taxonomy framework. Deep phylogeographic divergences have been reported for several species of Carlia skinks, but only for some eastern taxa have species boundaries been formally tested. The present study does this and revises the taxonomy for two species from northern Australia, Carlia johnstonei and C. triacantha. We introduce an approach that is based on the recently published method StarBEAST2, which uses multilocus data to explore the support for alternative species delimitation hypotheses using Bayes Factors (BFD). We apply this method, jointly with two other multispecies coalescent methods, using an extensive (from 2,163 exons) data set along with measures of 11 morphological characters. We use this integrated approach to evaluate two new candidate species previously revealed in phylogeographic analyses of rainbow skinks (genus Carlia) in Western Australia. The results based on BFD StarBEAST2, BFD* SNAPP and BPP genetic delimitation, together with morphology, support each of the four recently identified Carlia lineages as separate species. The BFD StarBEAST2 approach yielded results highly congruent with those from BFD* SNAPP and BPP. This supports use of the robust multilocus multispecies coalescent StarBEAST2 method for species delimitation, which does not require a priori resolved species or gene trees. Compared to the situation in C. triacantha, morphological divergence was greater between the two lineages within Kimberley endemic C. johnstonei, which also had deeper divergent histories. This congruence supports recognition of two species within C. johnstonei. Nevertheless, the combined evidence also supports recognition of two taxa within the more widespread C. triacantha. With this work, we describe two new species, Carlia insularis sp. nov and Carlia isostriacantha sp. nov. in the northwest of Australia. This contributes to increasing recognition that this region of tropical Australia has a rich and unique fauna.
Collapse
Affiliation(s)
- Ana C. Afonso Silva
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Natali Santos
- Universidade Federal do ABC, Santo André, SP, Brazil
| | - Huw A. Ogilvie
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
| |
Collapse
|