1
|
Otte KA, Fredericksen M, Fields P, Fröhlich T, Laforsch C, Ebert D. The cuticle proteome of a planktonic crustacean. Proteomics 2024; 24:e2300292. [PMID: 38676470 DOI: 10.1002/pmic.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The cuticles of arthropods provide an interface between the organism and its environment. Thus, the cuticle's structure influences how the organism responds to and interacts with its surroundings. Here, we used label-free quantification proteomics to provide a proteome of the moulted cuticle of the aquatic crustacean Daphnia magna, which has long been a prominent subject of studies on ecology, evolution, and developmental biology. We detected a total of 278 high-confidence proteins. Using protein sequence domain and functional enrichment analyses, we identified chitin-binding structural proteins and chitin-modifying enzymes as the most abundant protein groups in the cuticle proteome. Structural cuticular protein families showed a similar distribution to those found in other arthropods and indicated proteins responsible for the soft and flexible structure of the Daphnia cuticle. Finally, cuticle protein genes were also clustered as tandem gene arrays in the D. magna genome. The cuticle proteome presented here will be a valuable resource to the Daphnia research community, informing genome annotations and investigations on diverse topics such as the genetic basis of interactions with predators and parasites.
Collapse
Affiliation(s)
- Kathrin A Otte
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Maridel Fredericksen
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Brehm J, Ritschar S, Laforsch C, Mair MM. The complexity of micro- and nanoplastic research in the genus Daphnia - A systematic review of study variability and a meta-analysis of immobilization rates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131839. [PMID: 37348369 DOI: 10.1016/j.jhazmat.2023.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
In recent years, the number of publications on nano- and microplastic particles (NMPs) effects on freshwater organisms has increased rapidly. Freshwater crustaceans of the genus Daphnia are widely used in ecotoxicological research as model organisms for assessing the impact of NMPs. However, the diversity of experimental designs in these studies makes conclusions about the general impact of NMPs on Daphnia challenging. To approach this, we systematically reviewed the literature on NMP effects on Daphnia and summarized the diversity of test organisms, experimental conditions, NMP properties and measured endpoints to identify gaps in our knowledge of NMP effects on Daphnia. We use a meta-analysis on mortality and immobilization rates extracted from the compiled literature to illustrate how NMP properties, study parameters and the biology of Daphnia can impact outcomes in toxicity bioassays. In addition, we investigate the extent to which the available data can be used to predict the toxicity of untested NMPs based on the extracted parameters. Based on our results, we argue that focusing on a more diverse set of NMP properties combined with a more detailed characterization of the particles in future studies will help to fill current research gaps, improve predictive models and allow the identification of NMP properties linked to toxicity.
Collapse
Affiliation(s)
- Julian Brehm
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Sven Ritschar
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany.
| | - Magdalena M Mair
- Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany; Statistical Ecotoxicology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
3
|
Evans TG, Bible JM, Maynard A, Griffith KR, Sanford E, Kültz D. Proteomic changes associated with predator-induced morphological defenses in oysters. Mol Ecol 2022; 31:4254-4270. [PMID: 35754098 DOI: 10.1111/mec.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Inducible prey defenses occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co-occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defenses. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defenses. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with up-regulation of calcium transport proteins that could influence biomineralization. Inducible defenses evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were down-regulated by both oyster populations after exposure to drills, implying a trade-off between biomineralization and immune function. Following drill exposure, oysters from the population that co-occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform-specific protein expression. This trend suggests that a stronger inducible defense response evolved in oysters that co-occur with drills through modification of an existing mechanism.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Jillian M Bible
- Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, USA
| | - Ashley Maynard
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Kaylee R Griffith
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Wilde MV, Brehm J, Schwarzer M, Stöckl JB, Laforsch C, Fröhlich T. Improving the proteome coverage of Daphnia magna - implications for future ecotoxicoproteomics studies. Proteomics 2022; 22:e2100289. [PMID: 35143708 DOI: 10.1002/pmic.202100289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Aquatic pollution is an increasing problem and requires extensive research efforts to understand associated consequences and to find suitable solutions. The crustacean Daphnia is a keystone species in lacustrine ecosystems by connecting primary producers with higher trophic levels. Therefore, Daphnia is perfectly suitable to investigate biological effects of freshwater pollution and is frequently used as an important model organism in ecotoxicology. The field of ecotoxicoproteomics has become increasingly prevalent, as proteins are important for an organism's physiology and respond rapidly to changing environmental conditions. However, one obstacle in proteome analysis of Daphnia is highly abundant proteins like vitellogenin, decreasing the analytical depth of proteome analysis. To improve proteome coverage in Daphnia, we established an easy-to-use procedure based on the LC-MS/MS of whole daphnids and the dissected Daphnia gut, which is the main tissue getting in contact with soluble and particulate pollutants, separately. Using a comprehensive spectral library, generated by gas-phase fractionation and a data-independent acquisition method, we identified 4621 and 5233 protein groups at high confidence (false discovery rate < 0.01) in Daphnia and Daphnia gut samples, respectively. By combining both datasets, a proteome coverage of 6027 proteins was achieved, demonstrating the effectiveness of our approach. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen-Straße 25, Munich, 81377, Germany
| | - Julian Brehm
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Michael Schwarzer
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Jan B Stöckl
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen-Straße 25, Munich, 81377, Germany
| | - Christian Laforsch
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen-Straße 25, Munich, 81377, Germany
| |
Collapse
|
5
|
Trotter B, Wilde MV, Brehm J, Dafni E, Aliu A, Arnold GJ, Fröhlich T, Laforsch C. Long-term exposure of Daphnia magna to polystyrene microplastic (PS-MP) leads to alterations of the proteome, morphology and life-history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148822. [PMID: 34328913 DOI: 10.1016/j.scitotenv.2021.148822] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
In the past years, the research focus on the effects of MP on aquatic organisms extended from marine systems towards freshwater systems. An important freshwater model organism in the MP field is the cladoceran Daphnia, which plays a central role in lacustrine ecosystems and has been established as a test organism in ecotoxicology. To investigate the effects of MP on Daphnia magna, we performed a chronic exposure experiment with polystyrene MP under strictly standardized conditions. Chronic exposure of D. magna to PS microparticles led to a significant reduction in body length and number of offspring. To shed light on underlying molecular mechanisms induced by microplastic ingestion in D. magna, we assessed the effects of PS-MP at the proteomic level, as proteins, e.g., enzymes, are especially relevant for an organism's physiology. Using a state-of-the-art mass spectrometry based approach, we were able to identify 28,696 different peptides, which could be assigned to 3784 different proteins. Using a customized bioinformatic workflow, we identified 41 proteins significantly altered in abundance (q-value <0.05) in the PS exposed D. magna. Among the proteins increased in the PS treated group were several sulfotransferases, involved in basic biochemical pathways, as well as GABA transaminase catalyzing the degradation of the neurotransmitter GABA. In the abundance decreased group, we found essential proteins such as the DNA-directed RNA polymerase subunit and other proteins connected to biotic and inorganic stress and reproduction. Strikingly, we further identified several digestive enzymes that are significantly downregulated in the PS treated animals, which could have interfered with the affected animal's nutrient supply. This may explain the altered morphological and life history traits of the PS exposed daphnids. Our results indicate that long-term exposure to PS microplastics, which are frequently detected in environmental samples, may affect the fitness of daphnids.
Collapse
Affiliation(s)
- Benjamin Trotter
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany; Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Julian Brehm
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Evdokia Dafni
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Arlinda Aliu
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Georg J Arnold
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Christian Laforsch
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
6
|
Lu N, Sun Y, Wei J, Gu L, Zhang L, Yang Z, Huang Y. Toxic Microcystis aeruginosa alters the resource allocation in Daphnia mitsukuri responding to fish predation cues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116918. [PMID: 33743270 DOI: 10.1016/j.envpol.2021.116918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Many prey organisms adaptively respond to predation risk by inducible defenses with underlying tradeoffs in resource allocation. Cyanobacterial blooms expose zooplankton to poor food conditions, affecting the herbivores' fitness. Given the interferences on resources allocation and life history traits, poor-quality cyanobacteria are predicted to affect the adaptive predator-induced responses in zooplankton. Here, we exposed two clones (i.e., clones SH and ZJ) of the cladoceran Daphnia mitsukuri to different combinations of fish predation cues and diets containing toxic Microcystis aeruginosa (0%-30%). D. mitsukuri matured at a small size and had elongated relative tail spine as adaptive responses to fish cues. Despite the comparable tail spine defense, fish cue-induced changes in growth and reproduction in the clone SH were more pronounced than those in the clone ZJ under no M. aeruginosa. Animals accumulated microcystin in the whole body with increasing abundance of M. aeruginosa. However, the inducible enhanced tail spine allometry was not affected, resulting in unchanged tail spine defense by Daphnia under all M. aeruginosa treatments. By contrast, M. aeruginosa remarkably decreased the adaptive maturation size and the offspring number in all animals. However, the inducible reproductive effort tended to increase or remain unchanged depending on clones associated with the constant or decreased responses of the somatic growth effort under increasing M. aeruginosa. Our results suggested that toxic M. aeruginosa did not alter the resource allocation to antipredator morphological defense but affected the somatic growth and reproduction in D. mitsukuri under fish cues. The present study highlights the different effects of toxic cyanobacteria on adaptive predator-induced responses in zooplankton, promoting the understanding for the morphological defense-mediated predator-prey interactions in eutrophic environments.
Collapse
Affiliation(s)
- Na Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Junjun Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
7
|
Ritschar S, Bangalore Narayana VK, Rabus M, Laforsch C. Uncovering the chemistry behind inducible morphological defences in the crustacean Daphnia magna via micro-Raman spectroscopy. Sci Rep 2020; 10:22408. [PMID: 33376239 PMCID: PMC7772340 DOI: 10.1038/s41598-020-79755-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
The widespread distribution of Crustacea across every aquatic ecological niche on Earth is enabled due to their exoskeleton's versatile properties. Especially mineralization of the exoskeleton provides protection against diverse environmental threats. Thereby, the exoskeleton of some entomostracans is extremely phenotypically plastic, especially in response to predators. For instance, the freshwater zooplankton Daphnia forms conspicuous inducible morphological defenses, such as helmets, and can increase the stability of its exoskeleton, which renders them less vulnerable to predation. In this study, we reveal for the first time the chemical composition of the exoskeleton of Daphnia magna, using Raman spectroscopy, to be composed of α-chitin and proteins with embedded amorphous calcium carbonate (ACC). Furthermore, we reveal the exoskeleton's chemical changes associated with inducible defense mechanisms in the form of more substantial mineralization, which is probably correlated with enhanced carapace stability. We, therefore, highlight the importance of calcium-biominerals for inducible morphological defenses in Daphnia.
Collapse
Affiliation(s)
- Sven Ritschar
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | | | - Max Rabus
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
8
|
Tams V, Nickel JH, Ehring A, Cordellier M. Insights into the genetic basis of predator-induced response in Daphnia galeata. Ecol Evol 2020; 10:13095-13108. [PMID: 33304520 PMCID: PMC7713943 DOI: 10.1002/ece3.6899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
Phenotypic plastic responses allow organisms to rapidly adjust when facing environmental challenges-these responses comprise morphological, behavioral but also life-history changes. Alteration of life-history traits when exposed to predation risk have been reported often in the ecological and genomic model organism Daphnia. However, the molecular basis of this response is not well understood, especially in the context of fish predation. Here, we characterized the transcriptional profiles of two Daphnia galeata clonal lines with opposed life histories when exposed to fish kairomones. First, we conducted a differential gene expression, identifying a total of 125 candidate transcripts involved in the predator-induced response, uncovering substantial intraspecific variation. Second, we applied a gene coexpression network analysis to find clusters of tightly linked transcripts revealing the functional relations of transcripts underlying the predator-induced response. Our results showed that transcripts involved in remodeling of the cuticle, growth, and digestion correlated with the response to environmental change in D. galeata. Furthermore, we used an orthology-based approach to gain functional information for transcripts lacking gene ontology (GO) information, as well as insights into the evolutionary conservation of transcripts. We could show that our candidate transcripts have orthologs in other Daphnia species but almost none in other arthropods. The unique combination of methods allowed us to identify candidate transcripts, their putative functions, and evolutionary history associated with predator-induced responses in Daphnia. Our study opens up to the question as to whether the same molecular signature is associated with fish kairomones-mediated life-history changes in other Daphnia species.
Collapse
Affiliation(s)
- Verena Tams
- Institute of Marine Ecosystem and Fishery ScienceUniversität HamburgHamburgGermany
| | | | - Anne Ehring
- Institute of ZoologyUniversität HamburgHamburgGermany
| | | |
Collapse
|
9
|
Peshkin L, Boukhali M, Haas W, Kirschner MW, Yampolsky LY. Quantitative Proteomics Reveals Remodeling of Protein Repertoire Across Life Phases of Daphnia pulex. Proteomics 2019; 19:e1900155. [PMID: 31697011 DOI: 10.1002/pmic.201900155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/26/2019] [Indexed: 11/06/2022]
Abstract
Although the microcrustacean Daphnia is becoming an organism of choice for proteomic studies, protein expression across its life cycle have not been fully characterized. Proteomes of adult females, juveniles, asexually produced embryos, and the ephippia-resting stages containing sexually produced diapausing freezing- and desiccation-resistant embryos are analyzed. Overall, proteins with known molecular functions are more likely to be detected than proteins with no detectable orthology. Similarly, proteins with stronger gene model support in two independent genome assemblies can be detected, than those without such support. This suggests that the proteomics pipeline can be applied to verify hypothesized proteins, even given questionable reference gene models. In particular, upregulation of vitellogenins and downregulation of actins and myosins in embryos of both types, relative to juveniles and adults, and overrepresentation of cell-cycle related proteins in the developing embryos, relative to diapausing embryos and adults, are observed. Upregulation of small heat-shock proteins and peroxidases, as well as overrepresentation of stress-response proteins in the ephippium relative to the asexually produced non-diapausing embryos, is found. The ephippium also shows upregulation of three trehalose-synthesis proteins and downregulation of a trehalose hydrolase, consistent with the role of trehalose in protection against freezing and desiccation.
Collapse
Affiliation(s)
- Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Building 149, 13th Street, Charlestown, MA, 02129, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Building 149, 13th Street, Charlestown, MA, 02129, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 31714, USA
| |
Collapse
|
10
|
Ebner JN, Ritz D, von Fumetti S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol Ecol 2019; 28:4453-4469. [PMID: 31478292 PMCID: PMC6856850 DOI: 10.1111/mec.15225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Species' ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures, we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20°C for 168 hr. We constructed a homology-based database and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1,358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration and heat-shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Collapse
Affiliation(s)
- Joshua N. Ebner
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Danilo Ritz
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Stefanie von Fumetti
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
11
|
Chatterjee N, Choi S, Kwon OK, Lee S, Choi J. Multi-generational impacts of organic contaminated stream water on Daphnia magna: A combined proteomics, epigenetics and ecotoxicity approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:217-224. [PMID: 30893634 DOI: 10.1016/j.envpol.2019.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to elucidate the mechanisms of organismal sensitivity and/or physiological adaptation in the contaminated water environment. Multigenerational cultures (F0, F1, F2) of Daphnia magna in collected stream water (OCSW), contaminated with high fecal coliform, altered the reproductive scenario (changes in first brood size timing, clutch numbers, clutch size etc.), compromised fitness (increase hemoglobin, alteration in behavior), and affected global DNA methylation (hypermethylation) without affecting survival. Using proteomics approach, we found 288 proteins in F0 and 139 proteins in F2 that were significantly differentially upregulated after OCSW exposure. The individual protein expressions, biological processes and molecular functions were mainly related to metabolic processes, development and reproduction, transport (protein/lipid/oxygen), antioxidant activity, increased globin and S-adenosylmethionine synthase protein level etc., which was further found to be connected to phenotype-dependent endpoints. The proteomics pathway analysis evoked proteasome, chaperone family proteins, neuronal disease pathways (such as, Parkinson's disease) and apoptosis signaling pathways in OCSW-F0, which might be the cause of behavioral and developmental alterations in OCSW-F0. Finally, chronic multigenerational exposure to OCSW exhibited slow physiological adaptation in most of the measured effects, including proteomics analysis, from the F0 to F2 generations. The common upregulated proteins in both generations (F0 & F2), such as, globin, vitellinogen, lipid transport proteins etc., were possibly play the pivotal role in the organism's physiological adaptation. Taken together, our results, obtained with a multilevel approach, provide new insight of the molecular mechanism in fecal coliform-induced phenotypic plasticity in Daphnia magna.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea
| | - Suhyon Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea.
| |
Collapse
|
12
|
Stamps JA, Biro PA, Mitchell DJ, Saltz JB. Bayesian updating during development predicts genotypic differences in plasticity. Evolution 2018; 72:2167-2180. [PMID: 30133698 DOI: 10.1111/evo.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023]
Abstract
Interactions between genotypes and environments are central to evolutionary genetics, but such interactions are typically described, rather than predicted from theory. Recent Bayesian models of development generate specific predictions about genotypic differences in developmental plasticity (changes in the value of a given trait as a result of a given experience) based on genotypic differences in the value of the trait that is expressed by naïve subjects. We used these models to make a priori predictions about the effects of an aversive olfactory conditioning regime on the response of Drosophila melanogaster larvae to the odor of ethyl acetate. As predicted, across 116 genotypes initial trait values were related to plasticity. Genotypes most strongly attracted to the odor of ethyl acetate when naïve reduced their attraction scores more as a result of the aversive training regime than those less attracted to the same odor when naïve. Thus, as predicted, the variance across genotypes in attraction scores was higher before than after the shared experience. These results support predictions generated by Bayesian models of development and indicate that such models can be successfully used to investigate how variation across genotypes in information derived from ancestors combines with personal experience to differentially affect developmental plasticity in response to specific types of experience.
Collapse
Affiliation(s)
- Judy A Stamps
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Peter A Biro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - David J Mitchell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Julia B Saltz
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|
13
|
Do microplastic particles affect Daphnia magna at the morphological, life history and molecular level? PLoS One 2017; 12:e0187590. [PMID: 29145427 PMCID: PMC5690657 DOI: 10.1371/journal.pone.0187590] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 10/23/2017] [Indexed: 11/21/2022] Open
Abstract
Microplastic particles are ubiquitous not only in marine but also in freshwater ecosystems. However, the impacts of microplastics, consisting of a large variety of synthetic polymers, on freshwater organisms remains poorly understood. We examined the effects of two polymer mixtures on the morphology, life history and on the molecular level of the waterflea Daphnia magna (three different clones). Microplastic particles of ~40 μm were supplied at a low concentration (1% of the food particles) leading to an average of ~30 particles in the digestive tract which reflects a high microplastic contamination but still resembles a natural situation. Neither increased mortality nor changes on the morphological (body length, width and tail spine length) or reproductive parameters were observed for adult Daphnia. The analyses of juvenile Daphnia revealed a variety of small and rather subtle responses of morphological traits (body length, width and tail spine length). For adult Daphnia, alterations in expression of genes related to stress responses (i.e. HSP60, HSP70 & GST) as well as of other genes involved in body function and body composition (i.e. SERCA) were observed already 48h after exposure. We anticipate that the adverse effects of microplastic might be influenced by many additional factors like size, shape, type and even age of the particles and that the rather weak effects, as detected in a laboratory, may lead to reduced fitness in a natural multi-stressor environment.
Collapse
|
14
|
Hales NR, Schield DR, Andrew AL, Card DC, Walsh MR, Castoe TA. Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia. Mol Ecol 2017. [PMID: 28628257 DOI: 10.1111/mec.14213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature.
Collapse
Affiliation(s)
- Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Audra L Andrew
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
15
|
Lyu K, Meng Q, Zhu X, Dai D, Zhang L, Huang Y, Yang Z. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4798-4807. [PMID: 27057760 DOI: 10.1021/acs.est.6b00101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Global warming and increased nutrient fluxes cause cyanobacterial blooms in freshwater ecosystems. These phenomena have increased the concern for human health and ecosystem services. The mass occurrences of toxic cyanobacteria strongly affect freshwater zooplankton communities, especially the unselective filter feeder Daphnia. However, the molecular mechanisms of cyanobacterial toxicity remain poorly understood. This study is the first to combine the established body growth rate (BGR), which is an indicator of life-history fitness, with differential peptide labeling (iTRAQ)-based proteomics in Daphnia magna influenced by microcystin-producing (MP) and microcystin-free (MF) Microcystis aeruginosa. A significant decrease in BGR was detected when D. magna was exposed to MP or MF M. aeruginosa. Conducting iTRAQ proteomic analyses, we successfully identified and quantified 211 proteins with significant changes in expression. A cluster of orthologous groups revealed that M. aeruginosa-affected differential proteins were strongly associated with lipid, carbohydrate, amino acid, and energy metabolism. These parameters could potentially explain the reduced fitness based on the cost of the substance metabolism.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Daoxin Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|