1
|
Dai L, Yu L, Peng L, Tao L, Liu Y, Li G. Stochastic factors drive dynamics of ammonia-oxidizing archaeal and bacterial communities in aquaculture pond sediment. Front Microbiol 2022; 13:950677. [PMID: 36274694 PMCID: PMC9583541 DOI: 10.3389/fmicb.2022.950677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play an important role in nitrification, which is essential in the global nitrogen cycle. However, their dynamics and the underlying community processes in agricultural ecosystems under disturbance remain largely unknown. In this study we examined the spatiotemporal dynamics of AOA and AOB communities and analyzed their community processes in the sediment of aquaculture ponds across three different areas in China. We found some significant temporal changes in AOA and AOB community diversity and abundances, but no temporal changes in community composition, despite the significant variations in sediment properties between different sampling times. Nevertheless, significant differences were found for AOA and AOB communities between different areas. Distinct area-specific taxa were detected, and they were found to be important in determining the response of AOA and AOB communities to environmental factors. In addition, geographic distance was found to be significantly correlated with AOA and AOB community composition, which demonstrates that dispersal limitation could significantly contribute to the variations in AOA and AOB communities, and stochastic processes were found to be important in structuring AOA/AOB communities in aquaculture ponds. Taken together, our study indicates that the dynamics of AOA and AOB are based on their community characteristics in aquaculture pond sediment. Our results, for the first time, provide evidence for the dynamics of AOA and AOB communities being driven by stochastic factors in a disturbed environment, and might also be of use in the management of the aquaculture environment.
Collapse
Affiliation(s)
- Lili Dai
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liang Peng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ling Tao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yanbin Liu
- Ningxia Fisheries Research Institute Co., Ltd., Yinchuan, China
| | - Gu Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Gu Li,
| |
Collapse
|
2
|
Schwob G, Segovia NI, González-Wevar C, Cabrol L, Orlando J, Poulin E. Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean. Front Microbiol 2021; 12:703792. [PMID: 34335536 PMCID: PMC8317501 DOI: 10.3389/fmicb.2021.703792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.
Collapse
Affiliation(s)
- Guillaume Schwob
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Nicolás I. Segovia
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio González-Wevar
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Facultad de Ciencias, Centro Fondap IDEAL, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Léa Cabrol
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Julieta Orlando
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
3
|
Dickey JR, Swenie RA, Turner SC, Winfrey CC, Yaffar D, Padukone A, Beals KK, Sheldon KS, Kivlin SN. The Utility of Macroecological Rules for Microbial Biogeography. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.633155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology.
Collapse
|
4
|
Shafiee RT, Diver PJ, Snow JT, Zhang Q, Rickaby REM. Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches. ISME COMMUNICATIONS 2021; 1:1. [PMID: 37938628 PMCID: PMC9723733 DOI: 10.1038/s43705-021-00001-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.
Collapse
Affiliation(s)
- Roxana T Shafiee
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK.
| | - Poppy J Diver
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | - Joseph T Snow
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | | |
Collapse
|
5
|
Ma C, Coffinet S, Lipp JS, Hinrichs KU, Zhang C. Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters. Front Microbiol 2020; 11:1034. [PMID: 32582055 PMCID: PMC7291766 DOI: 10.3389/fmicb.2020.01034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Planktonic archaea include predominantly Marine Group I Thaumarchaeota (MG I) and Marine Group II Euryarchaeota (MG II), which play important roles in the oceanic carbon cycle. MG I produce specific lipids called isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), which are being used in the sea surface temperature proxy named TEX86. Although MG II may be the most abundant planktonic archaeal group in surface water, their lipid composition remains poorly characterized because of the lack of cultured representatives. Circumstantial evidence from previous studies of marine suspended particulate matter suggests that MG II may produce both GDGTs and archaeol-based lipids. In this study, integration of the 16S rRNA gene quantification and sequencing and lipid analysis demonstrated that MG II contributed significantly to the pool of archaeal tetraether lipids in samples collected from MG II-dominated surface waters of the Northwestern Pacific Ocean (NWPO). The archaeal lipid composition in MG II-dominated NWPO waters differed significantly from that of known MG I cultures, containing relatively more 2G-OH-, 2G- and 1G- GDGTs, especially in their acyclic form. Lipid composition in NWPO waters was also markedly different from MG I-dominated surface water samples collected in the East China Sea. GDGTs from MG II-dominated samples seemed to respond to temperature similarly to GDGTs from the MG I-dominated samples, which calls for further study using pure cultures to determine the exact impact of MG II on GDGT-based proxies.
Collapse
Affiliation(s)
- Cenling Ma
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Sarah Coffinet
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Julius S Lipp
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
6
|
Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, Rubinat-Ripoll L, Mestre M, Salazar G, Ruiz-González C, Sebastián M, de Vargas C, Acinas SG, Duarte CM, Gasol JM, Massana R. Disentangling the mechanisms shaping the surface ocean microbiota. MICROBIOME 2020; 8:55. [PMID: 32312331 PMCID: PMC7171866 DOI: 10.1186/s40168-020-00827-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. RESULTS We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. CONCLUSIONS The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway
| | - Ina M. Deutschmann
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| | - Pedro C. Junger
- Laboratory of Microbial Processes & Biodiversity (LMPB), Department of Hydrobiology (DHB), Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905 SP Brazil
| | - Caterina R. Giner
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anders K. Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway
| | - Thomas S. B. Schmidt
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Laura Rubinat-Ripoll
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Mireia Mestre
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Guillem Salazar
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Marta Sebastián
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Oceanography and Global Change Institute, IOCAG, University of Las Palmas de Gran Canaria, ULPGC, 35214 Gran Canaria, Spain
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Silvia G. Acinas
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Josep M. Gasol
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA Australia
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| |
Collapse
|
7
|
Abstract
Ridge flanks represent the major avenue of chemical and heat exchange between the Earth’s oceans and the lithosphere and are thought to harbor an enormous and understudied biosphere. However, little is known about the diversity and functionality of the crustal biosphere. Here, we report an indigenous community of archaea specialized in ammonia oxidation (i.e., AOA) in the oxic oceanic crust at North Pond. These AOA are the dominant archaea and are likely responsible for most of the cycling taking place in the first step of nitrification, a feasible nitrogen cycling step in the oxic basement. The crustal AOA community structure significantly differs from that in deep ocean water but is similar to that of the community in the overlying sediments in close proximity. This report links the occurrence of AOA to their metabolic activity in the oxic subseafloor crust and suggests that ecological selection and in situ proliferation may shape the microbial community structure in the rocky subsurface. Oceanic ridge flank systems represent one of the largest and least-explored microbial habitats on Earth. Fundamental ecological questions regarding community activity, recruitment, and succession in this environment remain unanswered. Here, we investigated ammonia-oxidizing archaea (AOA) in the sediment-buried basalts on the oxic and young ridge flank at North Pond, a sediment-filled pond on the western flank of the Mid-Atlantic Ridge, and compared them with those in the overlying sediments and bottom seawater. Nitrification in the North Pond basement is thermodynamically favorable and is supported by a reaction-transport model simulating the dynamics of nitrate in the crustal fluids. Nitrification rate is estimated to account for 6% to 7% of oxygen consumption, which is similar to the ratios found in marine oxic sediments, suggesting that aerobic mineralization of organic matter is the major ammonium source for crustal nitrifiers. Using the archaeal 16S rRNA and amoA genes as phylogenetic markers, we show that AOA, composed solely of Nitrosopumilaceae, are the major archaeal dwellers at North Pond. Phylogenetic analysis reveals that the crustal AOA communities are distinct from those in the bottom seawater and the upper oxic sediments but are similar to those in the basal part of the overlying sediment column, suggesting either similar environmental selection or the dispersal of microbes across the sediment-basement interface. Additionally, quantitative abundance data suggest enrichment of the dominant Nitrosopumilaceae clade (Eta clade) in the basement compared to the seawater. This study explored AOA and their activity in the upper oceanic crust, and our results have ecological implications for the biogeochemical cycling of nitrogen in the crustal subsurface. IMPORTANCE Ridge flanks represent the major avenue of chemical and heat exchange between the Earth’s oceans and the lithosphere and are thought to harbor an enormous and understudied biosphere. However, little is known about the diversity and functionality of the crustal biosphere. Here, we report an indigenous community of archaea specialized in ammonia oxidation (i.e., AOA) in the oxic oceanic crust at North Pond. These AOA are the dominant archaea and are likely responsible for most of the cycling taking place in the first step of nitrification, a feasible nitrogen cycling step in the oxic basement. The crustal AOA community structure significantly differs from that in deep ocean water but is similar to that of the community in the overlying sediments in close proximity. This report links the occurrence of AOA to their metabolic activity in the oxic subseafloor crust and suggests that ecological selection and in situ proliferation may shape the microbial community structure in the rocky subsurface.
Collapse
|
8
|
De Corte D, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, Herndl GJ, Yokokawa T. Viral Communities in the Global Deep Ocean Conveyor Belt Assessed by Targeted Viromics. Front Microbiol 2019; 10:1801. [PMID: 31496997 PMCID: PMC6712177 DOI: 10.3389/fmicb.2019.01801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
Viruses are an abundant, diverse and dynamic component of marine and terrestrial ecosystems. In the ocean, viruses play a key role in the biogeochemical cycles and controlling microbial abundance, diversity and evolution. Recent metagenomics studies assessed the structure of the viral community in the upper ocean. However, little is known about the compositional changes in viral communities along the deep ocean conveyor belt. To assess potential changes in the viral community in the global deep-water circulation system, water samples were collected in the core of the North Atlantic Deep Water (NADW) (∼2,500 m) and Pacific Antarctic Bottom Water (∼4,000 m). Microbial and viral abundance were evaluated by flow cytometry. Subsequently, flow cytometry was used to sort virus-like particles and next generation sequencing was applied to build DNA libraries from the sorted virus populations. The viral communities were highly diverse across different oceanic regions with high dissimilarity between samples. Only 18% of the viral protein clusters were shared between the NADW and the Pacific Antarctic Bottom Water. Few viral groups, mainly associated with uncultured environmental and uncultured Mediterranean viruses were ubiquitously distributed along the global deep-water circulation system. Thus, our results point to a few groups of widely distributed abundant viruses in addition to the presence of rare and diverse types of viruses at a local scale.
Collapse
Affiliation(s)
- Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | | | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eva Sintes
- Department of Limnology and Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.,Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| | - Gerhard J Herndl
- Department of Limnology and Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
9
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
10
|
Müller O, Wilson B, Paulsen ML, Rumińska A, Armo HR, Bratbak G, Øvreås L. Spatiotemporal Dynamics of Ammonia-Oxidizing Thaumarchaeota in Distinct Arctic Water Masses. Front Microbiol 2018; 9:24. [PMID: 29410658 PMCID: PMC5787140 DOI: 10.3389/fmicb.2018.00024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022] Open
Abstract
One of the most abundant archaeal groups on Earth is the Thaumarchaeota. They are recognized as major contributors to marine ammonia oxidation, a crucial step in the biogeochemical cycling of nitrogen. Their universal success is attributed to a high genomic flexibility and niche adaptability. Based on differences in the gene coding for ammonia monooxygenase subunit A (amoA), two different ecotypes with distinct distribution patterns in the water column have been identified. We used high-throughput sequencing of 16S rRNA genes combined with archaeal amoA functional gene clone libraries to investigate which environmental factors are driving the distribution of Thaumarchaeota ecotypes in the Atlantic gateway to the Arctic Ocean through an annual cycle in 2014. We observed the characteristic vertical pattern of Thaumarchaeota abundance with high values in the mesopelagic (>200 m) water throughout the entire year, but also in the epipelagic (<200 m) water during the dark winter months (January, March and November). The Thaumarchaeota community was dominated by three OTUs which on average comprised 76% ± 11 and varied in relative abundance according to water mass characteristics and not to depth or ammonium concentration, as suggested in previous studies. The ratios of the abundance of the different OTU types were similar to that of the functional amoA water cluster types. Together, this suggests a strong selection of ecotypes within different water masses, supporting the general idea of water mass characteristics as an important factor in defining microbial community structure. If indeed, as suggested in this study, Thaumarchaeota population dynamics are controlled by a set of factors, described here as water mass characteristics and not just depth alone, then changes in water mass flow will inevitably affect the distribution of the different ecotypes.
Collapse
Affiliation(s)
- Oliver Müller
- Department of Microbiology, University of Bergen, Bergen, Norway
| | - Bryan Wilson
- Department of Microbiology, University of Bergen, Bergen, Norway
| | - Maria L Paulsen
- Department of Microbiology, University of Bergen, Bergen, Norway
| | | | - Hilde R Armo
- Department of Microbiology, University of Bergen, Bergen, Norway
| | - Gunnar Bratbak
- Department of Microbiology, University of Bergen, Bergen, Norway
| | - Lise Øvreås
- Department of Microbiology, University of Bergen, Bergen, Norway.,University Center in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
11
|
La Cono V, Ruggeri G, Azzaro M, Crisafi F, Decembrini F, Denaro R, La Spada G, Maimone G, Monticelli LS, Smedile F, Giuliano L, Yakimov MM. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO 2-Fixing Bathypelagic Prokaryotic Consortia. Front Microbiol 2018; 9:3. [PMID: 29403458 PMCID: PMC5780414 DOI: 10.3389/fmicb.2018.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the "assimilation of bicarbonate in the dark" (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m-3 d-1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m-2 d-1. This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Gioachino Ruggeri
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Maurizio Azzaro
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Franco Decembrini
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Renata Denaro
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Gina La Spada
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Giovanna Maimone
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Luis S. Monticelli
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Laura Giuliano
- Mediterranean Science Commission (CIESM), Monaco, Monaco
| | - Michail M. Yakimov
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
12
|
Guerrero-Feijóo E, Sintes E, Herndl GJ, Varela MM. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin). Environ Microbiol 2017; 20:602-611. [DOI: 10.1111/1462-2920.13984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa Guerrero-Feijóo
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo 130; 15080 A Coruña Spain
| | - Eva Sintes
- Department of Limnology and Bio-Oceanography; University of Vienna, Center of Ecology; Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography; University of Vienna, Center of Ecology; Austria
- Department of Marine Microbiology and Biogeochemistry; NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, PO Box 59, 1790 AB Den Burg; The Netherlands
| | - Marta M. Varela
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo 130; 15080 A Coruña Spain
| |
Collapse
|
13
|
Milici M, Tomasch J, Wos-Oxley ML, Decelle J, Jáuregui R, Wang H, Deng ZL, Plumeier I, Giebel HA, Badewien TH, Wurst M, Pieper DH, Simon M, Wagner-Döbler I. Bacterioplankton Biogeography of the Atlantic Ocean: A Case Study of the Distance-Decay Relationship. Front Microbiol 2016; 7:590. [PMID: 27199923 PMCID: PMC4845060 DOI: 10.3389/fmicb.2016.00590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
In order to determine the influence of geographical distance, depth, and Longhurstian province on bacterial community composition and compare it with the composition of photosynthetic micro-eukaryote communities, 382 samples from a depth-resolved latitudinal transect (51°S–47°N) from the epipelagic zone of the Atlantic ocean were analyzed by Illumina amplicon sequencing. In the upper 100 m of the ocean, community similarity decreased toward the equator for 6000 km, but subsequently increased again, reaching similarity values of 40–60% for samples that were separated by ~12,000 km, resulting in a U-shaped distance-decay curve. We conclude that adaptation to local conditions can override the linear distance-decay relationship in the upper epipelagial of the Atlantic Ocean which is apparently not restrained by barriers to dispersal, since the same taxa were shared between the most distant communities. The six Longhurstian provinces covered by the transect were comprised of distinct microbial communities; ~30% of variation in community composition could be explained by province. Bacterial communities belonging to the deeper layer of the epipelagic zone (140–200 m) lacked a distance-decay relationship altogether and showed little provincialism. Interestingly, those biogeographical patterns were consistently found for bacteria from three different size fractions of the plankton with different taxonomic composition, indicating conserved underlying mechanisms. Analysis of the chloroplast 16S rRNA gene sequences revealed that phytoplankton composition was strongly correlated with both free-living and particle associated bacterial community composition (R between 0.51 and 0.62, p < 0.002). The data show that biogeographical patterns commonly found in macroecology do not hold for marine bacterioplankton, most likely because dispersal and evolution occur at drastically different rates in bacteria.
Collapse
Affiliation(s)
- Mathias Milici
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Melissa L Wos-Oxley
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Johan Decelle
- UMR 7144 - Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de RoscoffRoscoff, France; Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de RoscoffRoscoff, France
| | - Ruy Jáuregui
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Zhi-Luo Deng
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Iris Plumeier
- Group Microbial Interactions and Processes, Helmholtz-Center for Infection Research Braunschweig, Germany
| | - Helge-Ansgar Giebel
- Department of Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Thomas H Badewien
- Department of Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Mascha Wurst
- Department of Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Dietmar H Pieper
- Department of Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Meinhard Simon
- Department of Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg Oldenburg, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Center for Infection Research Braunschweig, Germany
| |
Collapse
|
14
|
Sintes E, De Corte D, Haberleitner E, Herndl GJ. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean. Front Microbiol 2016; 7:77. [PMID: 26903961 PMCID: PMC4746290 DOI: 10.3389/fmicb.2016.00077] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization.
Collapse
Affiliation(s)
- Eva Sintes
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Daniele De Corte
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Elisabeth Haberleitner
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Ecology, University of ViennaVienna, Austria
- Department of Biological Oceanography, Royal Netherlands Institute for Sea ResearchDen Burg, Netherlands
| |
Collapse
|