1
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594231. [PMID: 38798463 PMCID: PMC11118343 DOI: 10.1101/2024.05.14.594231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The courtship song of Drosophila melanogaster has long served as excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
2
|
Ribeiro TDS, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594228. [PMID: 38798433 PMCID: PMC11118405 DOI: 10.1101/2024.05.14.594228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl (Broman et al. 2003) using additive genetic models. We found 14 quantitative trait loci (QTL) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least one significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew J. Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Derek M. Benson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan S. Orr
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zachary C. Johnson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Russell B. Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Panigrahi M, Rajawat D, Nayak SS, Ghildiyal K, Sharma A, Jain K, Lei C, Bhushan B, Mishra BP, Dutt T. Landmarks in the history of selective sweeps. Anim Genet 2023; 54:667-688. [PMID: 37710403 DOI: 10.1111/age.13355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
4
|
Abondio P, Cilli E, Luiselli D. Inferring Signatures of Positive Selection in Whole-Genome Sequencing Data: An Overview of Haplotype-Based Methods. Genes (Basel) 2022; 13:genes13050926. [PMID: 35627311 PMCID: PMC9141518 DOI: 10.3390/genes13050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Signatures of positive selection in the genome are a characteristic mark of adaptation that can reveal an ongoing, recent, or ancient response to environmental change throughout the evolution of a population. New sources of food, climate conditions, and exposure to pathogens are only some of the possible sources of selective pressure, and the rise of advantageous genetic variants is a crucial determinant of survival and reproduction. In this context, the ability to detect these signatures of selection may pinpoint genetic variants that are responsible for a significant change in gene regulation, gene expression, or protein synthesis, structure, and function. This review focuses on statistical methods that take advantage of linkage disequilibrium and haplotype determination to reveal signatures of positive selection in whole-genome sequencing data, showing that they emerge from different descriptions of the same underlying event. Moreover, considerations are provided around the application of these statistics to different species, their suitability for ancient DNA, and the usefulness of discovering variants under selection for biomedicine and public health in an evolutionary medicine framework.
Collapse
Affiliation(s)
- Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
- Correspondence:
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|
5
|
Sprengelmeyer QD, Lack JB, Braun DT, Monette MJ, Pool JE. The evolution of larger size in high-altitude Drosophila melanogaster has a variable genetic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6493269. [PMID: 35100377 PMCID: PMC8895999 DOI: 10.1093/g3journal/jkab454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Important uncertainties persist regarding the genetic architecture of adaptive trait evolution in natural populations, including the number of genetic variants involved, whether they are drawn from standing genetic variation, and whether directional selection drives them to complete fixation. Here, we take advantage of a unique natural population of Drosophila melanogaster from the Ethiopian highlands, which has evolved larger body size than any other known population of this species. We apply a bulk segregant quantitative trait locus mapping approach to 4 unique crosses between highland Ethiopian and lowland Zambian populations for both thorax length and wing length. Results indicated a persistently variable genetic basis for these evolved traits (with largely distinct sets of quantitative trait loci for each cross), and at least a moderately polygenic architecture with relatively strong effects present. We complemented these mapping experiments with population genetic analyses of quantitative trait locus regions and gene ontology enrichment analysis, generating strong hypotheses for specific genes and functional processes that may have contributed to these adaptive trait changes. Finally, we find that the genetic architectures indicated by our quantitative trait locus mapping results for size traits mirror those from similar experiments on other recently evolved traits in this species. Collectively, these studies suggest a recurring pattern of polygenic adaptation in this species, in which causative variants do not approach fixation and moderately strong effect loci are present.
Collapse
Affiliation(s)
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dylan T Braun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J Monette
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Sprengelmeyer QD, Pool JE. Ethanol resistance in Drosophila melanogaster has increased in parallel cold-adapted populations and shows a variable genetic architecture within and between populations. Ecol Evol 2021; 11:15364-15376. [PMID: 34765183 PMCID: PMC8571616 DOI: 10.1002/ece3.8228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/24/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the genetic properties of adaptive trait evolution is a fundamental crux of biological inquiry that links molecular processes to biological diversity. Important uncertainties persist regarding the genetic predictability of adaptive trait change, the role of standing variation, and whether adaptation tends to result in the fixation of favored variants. Here, we use the recurrent evolution of enhanced ethanol resistance in Drosophila melanogaster during this species' worldwide expansion as a promising system to add to our understanding of the genetics of adaptation. We find that elevated ethanol resistance has evolved at least three times in different cooler regions of the species' modern range-not only at high latitude but also in two African high-altitude regions. Applying a bulk segregant mapping framework, we find that the genetic architecture of ethanol resistance evolution differs substantially not only between our three resistant populations, but also between two crosses involving the same European population. We then apply population genetic scans for local adaptation within our quantitative trait locus regions, and we find potential contributions of genes with annotated roles in spindle localization, membrane composition, sterol and alcohol metabolism, and other processes. We also apply simulation-based analyses that confirm the variable genetic basis of ethanol resistance and hint at a moderately polygenic architecture. However, these simulations indicate that larger-scale studies will be needed to more clearly quantify the genetic architecture of adaptive evolution and to firmly connect trait evolution to specific causative loci.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
7
|
Mérel V, Gibert P, Buch I, Rada VR, Estoup A, Gautier M, Fablet M, Boulesteix M, Vieira C. The worldwide invasion of Drosophila suzukii is accompanied by a large increase of transposable element load and a small number of putatively adaptive insertions. Mol Biol Evol 2021; 38:4252-4267. [PMID: 34021759 PMCID: PMC8476158 DOI: 10.1093/molbev/msab155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable Elements (TEs) are ubiquitous and mobile repeated sequences. They are major determinants of host fitness. Here, we characterized the TE content of the spotted wing fly Drosophila suzukii. Using a recently improved genome assembly, we reconstructed TE sequences de novo, and found that TEs occupy 47% of the genome and are mostly located in gene poor regions. The majority of TE insertions segregate at low frequencies, indicating a recent and probably ongoing TE activity. To explore TE dynamics in the context of biological invasions, we studied variation of TE abundance in genomic data from 16 invasive and six native populations of D. suzukii. We found a large increase of the TE load in invasive populations correlated with a reduced Watterson estimate of genetic diversity θ̂w a proxy of effective population size. We did not find any correlation between TE contents and bioclimatic variables, indicating a minor effect of environmentally induced TE activity. A genome-wide association study revealed that ca. 2,000 genomic regions are associated with TE abundance. We did not find, however, any evidence in such regions of an enrichment for genes known to interact with TE activity (e.g. transcription factor encoding genes or genes of the piRNA pathway). Finally, the study of TE insertion frequencies revealed 15 putatively adaptive TE insertions, six of them being likely associated with the recent invasion history of the species.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Patricia Gibert
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Inessa Buch
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Valentina Rodriguez Rada
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Arnaud Estoup
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mathieu Gautier
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Parallel and Population-specific Gene Regulatory Evolution in Cold-Adapted Fly Populations. Genetics 2021; 218:6275754. [PMID: 33989401 PMCID: PMC8864734 DOI: 10.1093/genetics/iyab077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
Horscroft C, Ennis S, Pengelly RJ, Sluckin TJ, Collins A. Sequencing era methods for identifying signatures of selection in the genome. Brief Bioinform 2020; 20:1997-2008. [PMID: 30053138 DOI: 10.1093/bib/bby064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Insights into genetic loci which are under selection and their functional roles contribute to increased understanding of the patterns of phenotypic variation we observe today. The availability of whole-genome sequence data, for humans and other species, provides opportunities to investigate adaptation and evolution at unprecedented resolution. Many analytical methods have been developed to interrogate these large data sets and characterize signatures of selection in the genome. We review here recently developed methods and consider the impact of increased computing power and data availability on the detection of selection signatures. Consideration of demography, recombination and other confounding factors is important, and use of a range of methods in combination is a powerful route to resolving different forms of selection in genome sequence data. Overall, a substantial improvement in methods for application to whole-genome sequencing is evident, although further work is required to develop robust and computationally efficient approaches which may increase reproducibility across studies.
Collapse
Affiliation(s)
- Clare Horscroft
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| | - Sarah Ennis
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| | - Reuben J Pengelly
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| | - Timothy J Sluckin
- Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK.,Mathematical Sciences, University of Southampton, Highfield, Southampton, UK
| | - Andrew Collins
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Duthie Building (808), Tremona Road, Southampton, UK.,Institute for Life Sciences, University of Southampton, Life Sciences Building (85), Highfield, Southampton, UK
| |
Collapse
|
10
|
Matthey‐Doret R, Whitlock MC. Background selection andFST: Consequences for detecting local adaptation. Mol Ecol 2019; 28:3902-3914. [DOI: 10.1111/mec.15197] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Remi Matthey‐Doret
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Michael C. Whitlock
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| |
Collapse
|
11
|
Villanueva‐Cañas JL, Rech GE, Cara MAR, González J. Beyond
SNP
s: how to detect selection on transposable element insertions. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Gabriel E. Rech
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Maria Angeles Rodriguez Cara
- Ecoanthropology and Ethnobiology Laboratory, UMR 7206, CNRS/MNHN/Universite Paris 7 Museum National d'HistoireNaturelle F‐75116 Paris France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|
12
|
Abstract
Drosophila melanogaster originated in tropical Africa before expanding into strikingly different temperate climates in Eurasia and beyond. Here, we find elevated cold tolerance in three distinct geographic regions: beyond the well-studied non-African case, we show that populations from the highlands of Ethiopia and South Africa have significantly increased cold tolerance as well. We observe greater cold tolerance in outbred versus inbred flies, but only in populations with higher inversion frequencies. Each cold-adapted population shows lower inversion frequencies than a closely-related warm-adapted population, suggesting that inversion frequencies may decrease with altitude in addition to latitude. Using the FST-based "Population Branch Excess" statistic (PBE), we found only limited evidence for parallel genetic differentiation at the scale of ∼4 kb windows, specifically between Ethiopian and South African cold-adapted populations. And yet, when we looked for single nucleotide polymorphisms (SNPs) with codirectional frequency change in two or three cold-adapted populations, strong genomic enrichments were observed from all comparisons. These findings could reflect an important role for selection on standing genetic variation leading to "soft sweeps". One SNP showed sufficient codirectional frequency change in all cold-adapted populations to achieve experiment-wide significance: an intronic variant in the synaptic gene Prosap. Another codirectional outlier SNP, at senseless-2, had a strong association with our cold trait measurements, but in the opposite direction as predicted. More generally, proteins involved in neurotransmission were enriched as potential targets of parallel adaptation. The ability to study cold tolerance evolution in a parallel framework will enhance this classic study system for climate adaptation.
Collapse
Affiliation(s)
- John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | | | - Justin B. Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
13
|
A Variable Genetic Architecture of Melanic Evolution in Drosophila melanogaster. Genetics 2016; 204:1307-1319. [PMID: 27638419 PMCID: PMC5105859 DOI: 10.1534/genetics.116.192492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. We identified 19 distinct QTL regions from nine mapping crosses, with several QTL peaks overlapping between two or all populations, and yet different crosses involving the same melanic population commonly yielded distinct QTL. The strongest QTL often overlapped well-known pigmentation genes, but we typically did not find wide signals of genetic differentiation (FST) between lightly and darkly pigmented populations at these genes. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism were consistent with selection on standing genetic variation. Overall, our results suggest that, even for potentially simpler traits like pigmentation, the complexity of adaptive trait evolution poses important challenges for QTL mapping and population genetic analysis.
Collapse
|