1
|
Nimbs MJ, Champion C, Lobos SE, Malcolm HA, Miller AD, Seinor K, Smith SD, Knott N, Wheeler D, Coleman MA. Genomic analyses indicate resilience of a commercially and culturally important marine gastropod snail to climate change. PeerJ 2023; 11:e16498. [PMID: 38025735 PMCID: PMC10676721 DOI: 10.7717/peerj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.
Collapse
Affiliation(s)
- Matt J. Nimbs
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Simon E. Lobos
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Hamish A. Malcolm
- NSW Department of Primary Industries, Fisheries Research, Coffs Harbour, NSW, Australia
| | - Adam D. Miller
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Kate Seinor
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Stephen D.A. Smith
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Aquamarine Australia, Mullaway, NSW, Australia
| | - Nathan Knott
- NSW Department of Primary Industries, Fisheries Research, Huskisson, NSW, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Melinda A. Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| |
Collapse
|
2
|
Holland OJ, Toomey M, Ahrens C, Hoffmann AA, Croft LJ, Sherman CDH, Miller AD. Whole genome resequencing reveals signatures of rapid selection in a virus-affected commercial fishery. Mol Ecol 2022; 31:3658-3671. [PMID: 35555938 PMCID: PMC9327721 DOI: 10.1111/mec.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Infectious diseases are recognized as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. Genome scans on H. rubra were performed using pooled whole genome resequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 single nucleotide polymorphism loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery potentially determined by rapid evolutionary changes leading to virus resistance. This is a novel example of apparently rapid adaptation in natural populations of a nonmodel marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
Collapse
Affiliation(s)
- Owen J. Holland
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Madeline Toomey
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Collin Ahrens
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical ScienceRoyal Botanic GardenSydneyNew South WalesAustralia
| | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laurence J. Croft
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Adam D. Miller
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
3
|
Zhao L, Qu F, Song N, Han Z, Gao T, Zhang Z. Population genomics provides insights into the population structure and temperature-driven adaptation of Collichthys lucidus. BMC Genomics 2021; 22:729. [PMID: 34625022 PMCID: PMC8501621 DOI: 10.1186/s12864-021-08045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding the genetic structure and local adaptive evolutionary mechanisms of marine organisms is crucial for the management of biological resources. As the ecologically and commercially important small-sized shallow-sea fish, Collichthys lucidus plays a vital role in the structure and functioning of marine ecosystem processes. C. lucidus has been shown to have an obvious population structure. Therefore, it is an ideal candidate for investigating population differentiation and local adaptation under heterogeneous environmental pressure. RESULTS A total of 184,708 high-quality single nucleotide polymorphisms (SNPs) were identified and applied to elucidate the fine-scale genetic structure and local thermal adaptation of 8 C. lucidus populations. Population structure analysis based on all SNPs indicated that the northern group and southern group of C. lucidus have a strong differentiation. Moreover, 314 SNPs were found to be significantly associated with temperature variation, and annotations of genes containing temperature-related SNPs suggested that genes were involved in material (protein, lipid, and carbohydrate) metabolism and immune responses. CONCLUSION The high genetic differentiation of 8 C. lucidus populations may have been caused by long-term geographic isolation during the glacial period. Moreover, we suspected that variation in these genes associated with material (protein, lipid, and carbohydrate) metabolism and immune responses was critical for adaptation to spatially heterogeneous temperatures in natural C. lucidus populations. In conclusion, this study could help us determine how C. lucidus populations will respond to future ocean temperature rising.
Collapse
Affiliation(s)
- Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China
| | - Fangyuan Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China
| | - Na Song
- Fisheries College, Ocean University of China, Qingdao, Shandong, 266003, P. R. China
| | - Zhiqiang Han
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, P. R. China
| | - Tianxiang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, P. R. China
| | - Zhaohui Zhang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China.
| |
Collapse
|
4
|
Reproduction in Urbanised Coastal Waters: Shallow-Water Sea Anemones (Entacmaea quadricolor and Stichodactyla haddoni) Maintain High Genetic Diversity and Panmixia. DIVERSITY 2020. [DOI: 10.3390/d12120467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sea anemones are sedentary marine animals that tend to disperse via planktonic larvae and are predicted to have high population connectivity in undisturbed habitats. We test whether two sea anemone species living in two different tidal zones of a highly disturbed marine environment can maintain high genetic connectivity. More than 1000 loci with single-nucleotide polymorphisms (SNPs) were obtained with double-digest RADseq for 81 Stichodactyla haddoni and 99 Entacmaea quadricolor individuals to test for population genetic structure. We find evidence that both species predominantly propagate via sexual reproduction, and asexual reproduction is limited. We observe panmixia that indicates the absence of effective dispersal barriers for these species living in a highly anthropogenically disturbed environment. This is positive news for both species that are also found in the aquarium trade. More fundamentally, our results suggest that inhabiting different parts of a shallow reef may not affect a species’ population connectivity nor favour asexual reproduction.
Collapse
|
5
|
Vaux F, Gemmell MR, Hills SFK, Marshall BA, Beu AG, Crampton JS, Trewick SA, Morgan-Richards M. Lineage Identification Affects Estimates of Evolutionary Mode in Marine Snails. Syst Biol 2020; 69:1106-1121. [PMID: 32163159 DOI: 10.1093/sysbio/syaa018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 11/14/2022] Open
Abstract
In order to study evolutionary pattern and process, we need to be able to accurately identify species and the evolutionary lineages from which they are derived. Determining the concordance between genetic and morphological variation of living populations, and then directly comparing extant and fossil morphological data, provides a robust approach for improving our identification of lineages through time. We investigate genetic and shell morphological variation in extant species of Penion marine snails from New Zealand, and extend this analysis into deep time using fossils. We find that genetic and morphological variation identify similar patterns and support most currently recognized extant species. However, some taxonomic over-splitting is detected due to shell size being a poor trait for species delimitation, and we identify incorrect assignment of some fossil specimens. We infer that a single evolutionary lineage (Penion sulcatus) has existed for 22 myr, with most aspects of shell shape and shell size evolving under a random walk. However, by removing samples previously classified as the extinct species P. marwicki, we instead detect morphological stasis for one axis of shell shape variation. This result demonstrates how lineage identification can change our perception of evolutionary pattern and process. [Genotyping by sequencing; geometric morphometrics; morphological evolution; Neogastropoda; phenotype; speciation; stasis.].
Collapse
Affiliation(s)
- Felix Vaux
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand.,Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, Otago, New Zealand
| | - Michael R Gemmell
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand
| | - Simon F K Hills
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand
| | - Bruce A Marshall
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Alan G Beu
- GNS Science, PO Box 30-368, Lower Hutt 5011, New Zealand
| | - James S Crampton
- School of Geography, Environment & Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Steven A Trewick
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand
| | - Mary Morgan-Richards
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand
| |
Collapse
|
6
|
Muir AP, Dubois SF, Ross RE, Firth LB, Knights AM, Lima FP, Seabra R, Corre E, Le Corguillé G, Nunes FLD. Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.). BMC Evol Biol 2020; 20:100. [PMID: 32778052 PMCID: PMC7418442 DOI: 10.1186/s12862-020-01658-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.
Collapse
Affiliation(s)
- Anna P Muir
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK.
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France.
| | - Stanislas F Dubois
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Rebecca E Ross
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- Institute of Marine Research, 1870 Nordnes, 5817, Bergen, Norway
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Fernando P Lima
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Seabra
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| |
Collapse
|
7
|
Gan HM, Tan MH, Austin CM, Sherman CDH, Wong YT, Strugnell J, Gervis M, McPherson L, Miller AD. Best Foot Forward: Nanopore Long Reads, Hybrid Meta-Assembly, and Haplotig Purging Optimizes the First Genome Assembly for the Southern Hemisphere Blacklip Abalone ( Haliotis rubra). Front Genet 2019; 10:889. [PMID: 31608118 PMCID: PMC6774278 DOI: 10.3389/fgene.2019.00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Mun Hua Tan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Christopher M. Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Craig D. H. Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Jan Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Mark Gervis
- Southern Ocean Mariculture, Port Fairy, VIC, Australia
| | | | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
8
|
Miller AD, Hoffmann AA, Tan MH, Young M, Ahrens C, Cocomazzo M, Rattray A, Ierodiaconou DA, Treml E, Sherman CDH. Local and regional scale habitat heterogeneity contribute to genetic adaptation in a commercially important marine mollusc (
Haliotis rubra
) from southeastern Australia. Mol Ecol 2019; 28:3053-3072. [DOI: 10.1111/mec.15128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Adam D. Miller
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
- Deakin Genomics Centre Deakin University Geelong Victoria Australia
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute, The University of Melbourne Parkville Victoria Australia
| | - Mun Hua Tan
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
- Deakin Genomics Centre Deakin University Geelong Victoria Australia
| | - Mary Young
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Collin Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University Penrith New South Wales Australia
| | - Michael Cocomazzo
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Alex Rattray
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Daniel A. Ierodiaconou
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Eric Treml
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Craig D. H. Sherman
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
- Deakin Genomics Centre Deakin University Geelong Victoria Australia
| |
Collapse
|
9
|
Population Genomics Applied to Fishery Management and Conservation. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_66] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Teske PR, Golla TR, Sandoval-Castillo J, Emami-Khoyi A, van der Lingen CD, von der Heyden S, Chiazzari B, Jansen van Vuuren B, Beheregaray LB. Mitochondrial DNA is unsuitable to test for isolation by distance. Sci Rep 2018; 8:8448. [PMID: 29855482 PMCID: PMC5981212 DOI: 10.1038/s41598-018-25138-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/16/2018] [Indexed: 12/04/2022] Open
Abstract
Tests for isolation by distance (IBD) are the most commonly used method of assessing spatial genetic structure. Many studies have exclusively used mitochondrial DNA (mtDNA) sequences to test for IBD, but this marker is often in conflict with multilocus markers. Here, we report a review of the literature on IBD, with the aims of determining (a) whether significant IBD is primarily a result of lumping spatially discrete populations, and (b) whether microsatellite datasets are more likely to detect IBD when mtDNA does not. We also provide empirical data from four species in which mtDNA failed to detect IBD by comparing these with microsatellite and SNP data. Our results confirm that IBD is mostly found when distinct regional populations are pooled, and this trend disappears when each is analysed separately. Discrepancies between markers were found in almost half of the studies reviewed, and microsatellites were more likely to detect IBD when mtDNA did not. Our empirical data rejected the lack of IBD in the four species studied, and support for IBD was particularly strong for the SNP data. We conclude that mtDNA sequence data are often not suitable to test for IBD, and can be misleading about species' true dispersal potential. The observed failure of mtDNA to reliably detect IBD, in addition to being a single-locus marker, is likely a result of a selection-driven reduction in genetic diversity obscuring spatial genetic differentiation.
Collapse
Affiliation(s)
- Peter R Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa.
| | - Tirupathi Rao Golla
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Arsalan Emami-Khoyi
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Carl D van der Lingen
- Branch: Fisheries Management, Department of Agriculture, Forestry and Fisheries, Private Bag X2, Vlaeberg, 8012, South Africa
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
| | - Brent Chiazzari
- School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Luciano B Beheregaray
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|
11
|
Sandoval‐Castillo J, Robinson NA, Hart AM, Strain LWS, Beheregaray LB. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (
Haliotis laevigata
), along a longitudinal environmental gradient. Mol Ecol 2018; 27:1603-1620. [DOI: 10.1111/mec.14526] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| | - Nick A. Robinson
- Nofima Ås Norway
- Sustainable Aquaculture Laboratory School of BioSciences University of Melbourne Parkville Vic Australia
| | - Anthony M. Hart
- Western Australian Fisheries and Marine Research Laboratories Department of Fisheries Western Australia Hillarys WA Australia
| | - Lachlan W. S. Strain
- Western Australian Fisheries and Marine Research Laboratories Department of Fisheries Western Australia Hillarys WA Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| |
Collapse
|
12
|
House GL, Hahn MW. Evaluating methods to visualize patterns of genetic differentiation on a landscape. Mol Ecol Resour 2018; 18:448-460. [PMID: 29282875 DOI: 10.1111/1755-0998.12747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/19/2017] [Indexed: 01/25/2023]
Abstract
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS.
Collapse
|
13
|
Adaptation Without Boundaries: Population Genomics in Marine Systems. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Benestan L, Moore JS, Sutherland BJG, Le Luyer J, Maaroufi H, Rougeux C, Normandeau E, Rycroft N, Atema J, Harris LN, Tallman RF, Greenwood SJ, Clark FK, Bernatchez L. Sex matters in massive parallel sequencing: Evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol Ecol 2017; 26:6767-6783. [DOI: 10.1111/mec.14217] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Laura Benestan
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jean-Sébastien Moore
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Ben J. G. Sutherland
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jérémy Le Luyer
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Clément Rougeux
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Eric Normandeau
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | | | - Jelle Atema
- Department of Biology; Boston University; Boston MA USA
| | - Les N. Harris
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Ross F. Tallman
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Spencer J. Greenwood
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Fraser K. Clark
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Louis Bernatchez
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
15
|
Sullivan BK, Robinson KL, Trevathan-Tackett SM, Lilje ES, Gleason FH, Lilje O. The First Isolation and Characterisation of the Protist Labyrinthula sp. in Southeastern Australia. J Eukaryot Microbiol 2017; 64:504-513. [PMID: 28004878 DOI: 10.1111/jeu.12387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023]
Abstract
As a result of anthropogenic influences and global climate change, emerging infectious marine diseases are thought to be increasingly more common and more severe than in the past. The aim of our investigation was to confirm the presence of Labyrinthula, the aetiological agent of the seagrass wasting disease, in Southeastern Australia and provide the first isolation and characterisation of this protist, in Australia. Colonies and individual cells were positively identified as Labyrinthula using published descriptions, diagrams, and photographs. Their identity was then confirmed using DNA barcoding of a region of the 18S rRNA gene. Species level identification of isolates was not possible as the taxonomy of the Labyrinthula is still poorly resolved. Still, a diversity of Labyrinthula was isolated from small sections of the southeast coast of Australia. The isolates were grouped into three haplotypes that are biogeographically restricted. These haplotypes are closely related to previously identified saprotrophic clades. The study highlights the need for further investigation into the global distribution of Labyrinthula, including phylogenetic pathogenicity and analysis of host-parasite interactions in response to stressors. Given the results of our analyses, it is prudent to continue research into disease and epidemic agents to better prepare researchers for potential future outbreaks.
Collapse
Affiliation(s)
- Brooke K Sullivan
- School of Biosciences, Victorian Marine Science Consortium, University of Melbourne, Queenscliff, Vic., 3225, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Vic., 3125, Australia
| | - Katie L Robinson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Stacey M Trevathan-Tackett
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Vic., 3125, Australia
| | - Erna S Lilje
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Osu Lilje
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
16
|
Puckett EE. Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0643-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS. REMOTE SENSING 2016. [DOI: 10.3390/rs8090772] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|