1
|
Zhao Z, Conradie W, Pietersen DW, Jordaan A, Nicolau G, Edwards S, Riekert S, Heideman N. Diversification of the African legless skinks in the subfamily Acontinae (Family Scincidae). Mol Phylogenet Evol 2023; 182:107747. [PMID: 36849095 DOI: 10.1016/j.ympev.2023.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Cladogenic diversification is often explained by referring to climatic oscillations and geomorphic shifts that cause allopatric speciation. In this regard, southern Africa retains a high level of landscape heterogeneity in vegetation, geology, and rainfall patterns. The legless skink subfamily Acontinae occurs broadly across the southern African subcontinent and therefore provides an ideal model group for investigating biogeographic patterns associated with the region. A robust phylogenetic study of the Acontinae with comprehensive coverage and adequate sampling of each taxon has been lacking up until now, resulting in unresolved questions regarding the subfamily's biogeography and evolution. In this study, we used multi-locus genetic markers (three mitochondrial and two nuclear) with comprehensive taxon coverage (all currently recognized Acontinae species) and adequate sampling (multiple specimens for most taxa) of each taxon to infer a phylogeny for the subfamily. The phylogeny retrieved four well-supported clades in Acontias and supported the monophyly of Typhlosaurus. Following the General Lineage Concept (GLC), many long-standing phylogenetic enigmas within Acontias occidentalis and the A. kgalagadi, A. lineatus and A. meleagris species complexes, and within Typhlosaurus were resolved. Our species delimitation analyses suggest the existence of hidden taxa in the A. occidentalis, A. cregoi and A. meleagris species groups, but also suggest that some currently recognized species in the A. lineatus and A. meleagris species groups, and within Typhlosaurus, should be synonymised. We also possibly encountered "ghost introgression" in A. occidentalis. Our inferred species tree revealed a signal of gene flow, which implies possible cross-over in some groups. Fossil evidence calibration dating results showed that the divergence between Typhlosaurus and Acontias was likely influenced by cooling and increasing aridity along the southwest coast in the mid-Oligocene caused by the opening of the Drake Passage. Further cladogenesis observed in Typhlosaurus and Acontias was likely influenced by Miocene cooling, expansion of open habitat, uplifting of the eastern Great Escarpment (GE), and variation in rainfall patterns, together with the effect of the warm Agulhas Current since the early Miocene, the development of the cold Benguela Current since the late Miocene, and their co-effects. The biogeographic pattern of the Acontinae bears close resemblance to that of other herpetofauna (e.g., rain frogs and African vipers) in southern Africa.
Collapse
Affiliation(s)
- Zhongning Zhao
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa; Department of Genetics, University of the Free State, Bloemfontein, South Africa.
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Port Elizabeth 6013, South Africa; Department of Nature Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, George Campus, Nelson Mandela University, George, South Africa
| | - Darren W Pietersen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Adriaan Jordaan
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Gary Nicolau
- Zoology & Entomology Molecular Lab, Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Shelley Edwards
- Zoology & Entomology Molecular Lab, Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Stephanus Riekert
- Department of Information and Communication Technology Services, University of the Free State, Bloemfontein, South Africa
| | - Neil Heideman
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
2
|
Moore VDG, Haenel G. Variation in melanin content of lizard livers: hybrids turning to the dark side. Physiol Biochem Zool 2022; 95:536-543. [DOI: 10.1086/721445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
4
|
Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, Smiley JT, Dahlhoff EP. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution 2020; 74:1724-1740. [PMID: 32246837 DOI: 10.1111/evo.13962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically "matched" than "mismatched" mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.
Collapse
Affiliation(s)
- Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Sarah J Heidl
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Kevin T Roberts
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Nicolas A Zavala
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| | - John T Smiley
- White Mountain Research Center, University of California, Bishop, California, 93514
| | - Elizabeth P Dahlhoff
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| |
Collapse
|
5
|
Kim DI, Park IK, Ota H, Fong JJ, Kim JS, Zhang YP, Li SR, Choi WJ, Park D. Patterns of morphological variation in the Schlegel’s Japanese gecko (Gekko japonicus) across populations in China, Japan, and Korea. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41610-019-0132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Background
Studies of morphological variation within and among populations provide an opportunity to understand local adaptation and potential patterns of gene flow. To study the evolutionary divergence patterns of Schlegel’s Japanese gecko (Gekko japonicus) across its distribution, we analyzed data for 15 morphological characters of 324 individuals across 11 populations (2 in China, 4 in Japan, and 5 in Korea).
Results
Among-population morphological variation was smaller than within-population variation, which was primarily explained by variation in axilla-groin length, number of infralabials, number of scansors on toe IV, and head-related variables such as head height and width. The population discrimination power was 32.4% and in cluster analysis, populations from the three countries tended to intermix in two major groups.
Conclusion
Our results indicate that morphological differentiation among the studied populations is scarce, suggesting short history for some populations after their establishment, frequent migration of individuals among the populations, and/or local morphological differentiation in similar urban habitats. Nevertheless, we detected interesting phenetic patterns that may predict consistent linkage of particular populations that are independent of national borders. Additional sampling across the range and inclusion of genetic data could give further clue for the historical relationship among Chinese, Japanese, and Korean populations of G. japonicus.
Collapse
|
6
|
Zarza E, Reynoso VH, Faria CMA, Emerson BC. Introgressive hybridization in a Spiny-Tailed Iguana, Ctenosaura pectinata, and its implications for taxonomy and conservation. PeerJ 2019; 7:e6744. [PMID: 31065455 PMCID: PMC6485205 DOI: 10.7717/peerj.6744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/05/2019] [Indexed: 11/30/2022] Open
Abstract
Introgression, the transmission of genetic material of one taxon into another through hybridization, can have various evolutionary outcomes. Previous studies have detected signs of introgression between western populations of the Mexican endemic and threatened spiny-tailed iguana, Ctenosaura pectinata. However, the extent of this phenomenon along the geographic distribution of the species is unknown. Here, we use multilocus data together with detailed geographic sampling to (1) define genotypic clusters within C. pectinata; (2) evaluate geographic concordance between maternally and biparentally inherited markers; (3) examine levels of introgression between genotypic clusters, and (4) suggest taxonomic modifications in light of this information. Applying clustering methods to genotypes of 341 individuals from 49 localities of C. pectinata and the closely related C. acanthura, we inferred the existence of five genotypic clusters. Contact zones between genotypic clusters with signatures of interbreeding were detected, showing different levels of geographic discordance with mtDNA lineages. In northern localities, mtDNA and microsatellites exhibit concordant distributions, supporting the resurrection of C. brachylopha. Similar concordance is observed along the distribution of C. acanthura, confirming its unique taxonomic identity. Genetic and geographic concordance is also observed for populations within southwestern Mexico, where the recognition of a new species awaits in depth taxonomic revision. In contrast, in western localities a striking pattern of discordance was detected where up to six mtDNA lineages co-occur with only two genotypic clusters. Given that the type specimen originated from this area, we suggest that individuals from western Mexico keep the name C. pectinata. Our results have profound implications for conservation, management, and forensics of Mexican iguanas.
Collapse
Affiliation(s)
- Eugenia Zarza
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Grupo Académico de Biotecnología Ambiental, El Colegio de la Frontera Sur, Unidad Tapachula, Tapachula, Chiapas, Mexico.,CONACYT, Ciudad de México, Mexico
| | - Víctor H Reynoso
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Christiana M A Faria
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Current Affiliation: Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brasil
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
7
|
Haenel GJ, Del Gaizo Moore V. Functional Divergence of Mitochondria and Coevolution of Genomes: Cool Mitochondria in Hot Lizards. Physiol Biochem Zool 2018; 91:1068-1081. [DOI: 10.1086/699918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
|