1
|
Kopp A. Evolution: A kit for fooling your rivals. Curr Biol 2024; 34:R921-R923. [PMID: 39437728 DOI: 10.1016/j.cub.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Some male swordtail fish mimic female 'pregnancy spots' to reduce aggression from rival males and gain a fitness advantage. This sexual mimicry is linked to evolutionary changes in the regulatory region of the kit-liganda gene that controls melanocyte development.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Marino A, Reboud EL, Chevalier E, Tilak MK, Contreras-Garduño J, Nabholz B, Condamine FL. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies. G3 (BETHESDA, MD.) 2023; 13:jkad239. [PMID: 37847748 PMCID: PMC10700114 DOI: 10.1093/g3journal/jkad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Relict species, like coelacanth, gingko, tuatara, are the remnants of formerly more ecologically and taxonomically diverse lineages. It raises the questions of why they are currently species-poor, have restrained ecology, and are often vulnerable to extinction. Estimating heterozygosity level and demographic history can guide our understanding of the evolutionary history and conservation status of relict species. However, few studies have focused on relict invertebrates compared to vertebrates. We sequenced the genome of Baronia brevicornis (Lepidoptera: Papilionidae), which is an endangered species, the sister species of all swallowtail butterflies, and is the oldest lineage of all extant butterflies. From a dried specimen, we were able to generate both long-read and short-read data and assembled a genome of 406 Mb for Baronia. We found a fairly high level of heterozygosity (0.58%) compared to other swallowtail butterflies, which contrasts with its endangered and relict status. Taking into account the high ratio of recombination over mutation, demographic analyses indicated a sharp decline of the effective population size initiated in the last million years. Moreover, the Baronia genome was used to study genome size variation in Papilionidae. Genome sizes are mostly explained by transposable elements activities, suggesting that large genomes appear to be a derived feature in swallowtail butterflies as transposable elements activity is recent and involves different transposable elements classes among species. This first Baronia genome provides a resource for assisting conservation in a flagship and relict insect species as well as for understanding swallowtail genome evolution.
Collapse
Affiliation(s)
- Alba Marino
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Eliette L Reboud
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Emmanuelle Chevalier
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Jorge Contreras-Garduño
- Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores, campus Morelia, Antigua Carretera a Pátzcuaro #8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
3
|
Maisonneuve L, Smadi C, Llaurens V. Evolutionary origins of sexual dimorphism: Lessons from female-limited mimicry in butterflies. Evolution 2022; 76:2404-2423. [PMID: 36005294 DOI: 10.1111/evo.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/18/2022] [Indexed: 01/22/2023]
Abstract
The striking female-limited mimicry observed in some butterfly species is a text-book example of sexually dimorphic trait submitted to intense natural selection. Two main evolutionary hypotheses, based on natural and sexual selection respectively, have been proposed. Predation pressure favoring mimicry toward defended species could be higher in females because of their slower flight, and thus overcome developmental constraints favoring the ancestral trait that limits the evolution of mimicry in males but not in females. Alternatively, the evolution of mimicry in males could be limited by female preference for non-mimetic males. However, the evolutionary origin of female preference for non-mimetic males remains unclear. Here, we hypothesize that costly sexual interactions between individuals from distinct sympatric species might intensify because of mimicry, therefore promoting female preference for non-mimetic trait. Using a mathematical model, we compare the evolution of female-limited mimicry when assuming either alternative selective hypotheses. We show that the patterns of divergence of male and female trait from the ancestral traits can differ between these selection regimes. We specifically highlight that divergence in female trait is not a signature of the effect of natural selection. Our results also evidence why female-limited mimicry is more frequently observed in Batesian mimics.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Charline Smadi
- Univ. Grenoble Alpes, INRAE, LESSEM, France, Saint-Martin-d'Hères, 38402.,Univ. Grenoble Alpes, CNRS, Institut Fourier, Gières, 38610, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
4
|
Owens HL, Lewis DS, Condamine FL, Kawahara AY, Guralnick RP. Comparative Phylogenetics of Papilio Butterfly Wing Shape and Size Demonstrates Independent Hindwing and Forewing Evolution. Syst Biol 2020; 69:813-819. [PMID: 32259252 DOI: 10.1093/sysbio/syaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
The complex forces that shape butterfly wings have long been a subject of experimental and comparative research. Butterflies use their wings for flight, camouflage, mate recognition, warning, and mimicry. However, general patterns and correlations among wing shape and size evolution are still poorly understood. We collected geometric morphometric measurements from over 1400 digitized museum specimens of Papilio swallowtails and combined them with phylogenetic data to test two hypotheses: 1) forewing shape and size evolve independently of hindwing shape and size and 2) wing size evolves more quickly than wing shape. We also determined the major axes of wing shape variation and discovered that most shape variability occurs in hindwing tails and adjacent areas. We conclude that forewing shape and size are functionally and biomechanically constrained, whereas hindwings are more labile, perhaps in response to disruptive selective pressure for Batesian mimicry or against predation. The development of a significant, re-usable, digitized data resource will enable further investigation on tradeoffs between flight performance and ecological selective pressures, along with the degree to which intraspecific, local-scale selection may explain macroevolutionary patterns. [Batesian mimicry; Lepidoptera; geometric morphometrics; museum specimens.].
Collapse
Affiliation(s)
- H L Owens
- Center for Macroecology, Evolution, and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark.,Florida Museum of Natural History, University of Florida, 1659 Museum Rd, Gainesville, FL 32611, USA
| | - D S Lewis
- Department of Biology, Burman University, 6730 University Drive, Lacombe, Alberta, Canada T4L 2E5
| | - F L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - A Y Kawahara
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd, Gainesville, FL 32611, USA
| | - R P Guralnick
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Timmermans MJTN, Srivathsan A, Collins S, Meier R, Vogler AP. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed- invected. Proc Biol Sci 2020; 287:20200443. [PMID: 32345166 DOI: 10.1098/rspb.2020.0443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polymorphic Batesian mimics exhibit multiple protective morphs that each mimic a different noxious model. Here, we study the genomic transitions leading to the evolution of different mimetic wing patterns in the polymorphic Mocker Swallowtail Papilio dardanus. We generated a draft genome (231 Mb over 30 chromosomes) and re-sequenced individuals of three morphs. Genome-wide single nucleotide polymorphism (SNP) analysis revealed elevated linkage disequilibrium and divergence between morphs in the regulatory region of engrailed, a developmental gene previously implicated in the mimicry switch. The diverged region exhibits a discrete chromosomal inversion (of 40 kb) relative to the ancestral orientation that is associated with the cenea morph, but not with the bottom-recessive hippocoonides morph or with non-mimetic allopatric populations. The functional role of this inversion in the expression of the novel phenotype is currently unknown, but by preventing recombination, it allows the stable inheritance of divergent alleles enabling geographic spread and local coexistence of multiple adaptive morphs.
Collapse
Affiliation(s)
- Martijn J T N Timmermans
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK.,Department of Natural Sciences, Middlesex University, London, UK
| | - Amrita Srivathsan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore.,Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
6
|
Panettieri S, Gjinaj E, John G, Lohman DJ. Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra. PLoS One 2018; 13:e0202465. [PMID: 30208047 PMCID: PMC6135364 DOI: 10.1371/journal.pone.0202465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/04/2018] [Indexed: 11/18/2022] Open
Abstract
With varied, brightly patterned wings, butterflies have been the focus of much work on the evolution and development of phenotypic novelty. However, the chemical structures of wing pigments from few butterfly species have been identified. We characterized the orange wing pigments of female Elymnias hypermnestra butterflies (Lepidoptera: Nymphalidae: Satyrinae) from two Southeast Asian populations. This species is a sexually dimorphic Batesian mimic of several model species. Females are polymorphic: in some populations, females are dark, resemble conspecific males, and mimic Euploea spp. In other populations, females differ from males and mimic orange Danaus spp. Using LC-MS/MS, we identified nine ommochrome pigments: six from a population in Chiang Mai, Thailand, and five compounds from a population in Bali, Indonesia. Two ommochromes were found in both populations, and only two of the nine compounds have been previously reported. The sexually dimorphic Thai and Balinese populations are separated spatially by monomorphic populations in peninsular Malaysia, Singapore, and Sumatra, suggesting independent evolution of mimetic female wing pigments in these disjunct populations. These results indicate that other butterfly wing pigments remain to be discovered.
Collapse
Affiliation(s)
- Silvio Panettieri
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | - Erisa Gjinaj
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
| | - George John
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
- * E-mail: (DJL); (GJ)
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, United States of America
- Entomology Section, National Museum of the Philippines, Manila, Philippines
- * E-mail: (DJL); (GJ)
| |
Collapse
|
7
|
Zhang W, Westerman E, Nitzany E, Palmer S, Kronforst MR. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun 2017; 8:1269. [PMID: 29116078 PMCID: PMC5677128 DOI: 10.1038/s41467-017-01370-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Supergene mimicry is a striking phenomenon but we know little about the evolution of this trait in any species. Here, by studying genomes of butterflies from a recent radiation in which supergene mimicry has been isolated to the gene doublesex, we show that sexually dimorphic mimicry and female-limited polymorphism are evolutionarily related as a result of ancient balancing selection combined with independent origins of similar morphs in different lineages and secondary loss of polymorphism in other lineages. Evolutionary loss of polymorphism appears to have resulted from an interaction between natural selection and genetic drift. Furthermore, molecular evolution of the supergene is dominated not by adaptive protein evolution or balancing selection, but by extensive hitchhiking of linked variants on the mimetic dsx haplotype that occurred at the origin of mimicry. Our results suggest that chance events have played important and possibly opposing roles throughout the history of this classic example of adaptation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Erica Westerman
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eyal Nitzany
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|