1
|
Dixit T. A synthesis of coevolution across levels of biological organization. Evolution 2024; 78:211-220. [PMID: 38085659 DOI: 10.1093/evolut/qpad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 02/03/2024]
Abstract
In evolutionary ecology, coevolution is typically defined as reciprocal evolution of interacting species. However, outside the context of interacting species, the term "coevolution" is also used at levels of biological organization within species (e.g., between males and females, between cells, and between genes or proteins). Furthermore, although evolution is typically defined as "genetic change over time", coevolution need not involve genetic changes in the interacting parties, since cultures can also evolve. In this review, I propose that coevolution be defined more broadly as "reciprocal adaptive evolution at any level of biological organisation". The classification of reciprocal evolution at all levels of biological organization as coevolution would maintain consistency in terminology. More importantly, the broader definition should facilitate greater integration of coevolution research across disciplines. For example, principles usually discussed only in the context of coevolution between species or coevolution between genes (e.g., tight and diffuse coevolution, and compensatory coevolution, respectively) could be more readily applied to new fields. The application of coevolutionary principles to new contexts could also provide benefits to society, for instance in deducing the dynamics of coevolution between cancer cells and cells of the human immune system.
Collapse
Affiliation(s)
- Tanmay Dixit
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
2
|
Montelongo Hernandez C, Putonti C, Wolfe AJ. Urinary Plasmids Reduce Permissivity to Coliphage Infection. Microbiol Spectr 2023; 11:e0130923. [PMID: 37409956 PMCID: PMC10433841 DOI: 10.1128/spectrum.01309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The microbial community of the urinary tract (urinary microbiota or urobiota) has been associated with human health. Bacteriophages (phages) and plasmids present in the urinary tract, like in other niches, may shape urinary bacterial dynamics. While urinary Escherichia coli strains associated with urinary tract infection (UTI) and their phages have been catalogued for the urobiome, bacterium-plasmid-phage interactions have yet to be explored. In this study, we characterized urinary E. coli plasmids and their ability to decrease permissivity to E. coli phage (coliphage) infection. Putative F plasmids were predicted in 47 of 67 urinary E. coli isolates, and most of these plasmids carried genes that encode toxin-antitoxin (TA) modules, antibiotic resistance, and/or virulence. Urinary E. coli plasmids, from urinary microbiota strains UMB0928 and UMB1284, were conjugated into E. coli K-12 strains. These transconjugants included genes for antibiotic resistance and virulence, and they decreased permissivity to coliphage infection by the laboratory phage P1vir and the urinary phages Greed and Lust. Plasmids in one transconjugant were maintained in E. coli K-12 for up to 10 days in the absence of antibiotic resistance selection; this included the maintenance of the antibiotic resistance phenotype and decreased permissivity to phage. Finally, we discuss how F plasmids present in urinary E. coli strains could play a role in coliphage dynamics and the maintenance of antibiotic resistance in urinary E. coli. IMPORTANCE The urinary tract contains a resident microbial community called the urinary microbiota or urobiota. Evidence exists that it is associated with human health. Bacteriophages (phages) and plasmids present in the urinary tract, like in other niches, may shape urinary bacterial dynamics. Bacterium-plasmid-phage interactions have been studied primarily in laboratory settings and are yet to be thoroughly tested in complex communities. This is especially true of the urinary tract, where the bacterial genetic determinants of phage infection are not well understood. In this study, we characterized urinary E. coli plasmids and their ability to decrease permissivity to E. coli phage (coliphage) infection. Urinary E. coli plasmids, encoding antibiotic resistance and transferred by conjugation into naive laboratory E. coli K-12 strains, decreased permissivity to coliphage infection. We propose a model by which urinary plasmids present in urinary E. coli strains could help to decrease phage infection susceptibility and maintain the antibiotic resistance of urinary E. coli. This has consequences for phage therapy, which could inadvertently select for plasmids that encode antibiotic resistance.
Collapse
Affiliation(s)
- Cesar Montelongo Hernandez
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Ren L, Song X, Wu C, Li G, Zhang X, Xia X, Xiang C, Han BP, Jeppesen E, Wu QL. Biogeographical and Biodiversity Patterns of Marine Planktonic Bacteria Spanning from the South China Sea across the Gulf of Bengal to the Northern Arabian Sea. Microbiol Spectr 2023; 11:e0039823. [PMID: 37098981 PMCID: PMC10269852 DOI: 10.1128/spectrum.00398-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Understanding the biogeographical and biodiversity patterns of bacterial communities is essential in unraveling their responses to future environmental changes. However, the relationships between marine planktonic bacterial biodiversity and seawater chlorophyll a are largely understudied. Here, we used high-throughput sequencing to study the biodiversity patterns of marine planktonic bacteria across a broad chlorophyll a gradient spanning from the South China Sea across the Gulf of Bengal to the northern Arabian Sea. We found that the biogeographical patterns of marine planktonic bacteria complied with the scenario of homogeneous selection, with chlorophyll a concentration being the key environmental selecting variable of bacteria taxa. The relative abundance of Prochlorococcus, the SAR11 clade, the SAR116 clade, and the SAR86 clade significantly decreased in habitats with high chlorophyll a concentrations (>0.5 μg/L). Free-living bacteria (FLB) and particle-associated bacteria (PAB) displayed contrasting alpha diversity and chlorophyll a relationships with a positive linear correlation for FLB but a negative correlation for PAB. We further found that PAB had a narrower niche breadth of chlorophyll a than did FLB, with far fewer bacterial taxa being favored at higher chlorophyll a concentrations. Higher chlorophyll a concentrations were linked to the enhanced stochastic drift and reduced beta diversity of PAB but to the weakened homogeneous selection, enhanced dispersal limitation, and increased beta diversity of FLB. Taken together, our findings might broaden our knowledge about the biogeography of marine planktonic bacteria and advance the understanding of bacterial roles in predicting ecosystem functioning under future environmental changes that are derived from eutrophication. IMPORTANCE One of the long-standing interests of biogeography is to explore diversity patterns and uncover their underlying mechanisms. Despite intensive studies on the responses of eukaryotic communities to chlorophyll a concentrations, we know little about how changes in seawater chlorophyll a concentrations affect free-living bacteria (FLB) and particle-associated bacteria (PAB) diversity patterns in natural systems. Our biogeography study demonstrated that marine FLB and PAB displayed contrasting diversity and chlorophyll a relationships and exhibited completely different assembly mechanisms. Our findings broaden our knowledge about the biogeographical and biodiversity patterns of marine planktonic bacteria in nature systems and suggest that PAB and FLB should be considered independently in predicting marine ecosystem functioning under future frequent eutrophication.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chuangfeng Wu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiufeng Zhang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chenhui Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
4
|
Coyte KZ, Stevenson C, Knight CG, Harrison E, Hall JPJ, Brockhurst MA. Horizontal gene transfer and ecological interactions jointly control microbiome stability. PLoS Biol 2022; 20:e3001847. [PMID: 36350849 PMCID: PMC9678337 DOI: 10.1371/journal.pbio.3001847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/21/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
Genes encoding resistance to stressors, such as antibiotics or environmental pollutants, are widespread across microbiomes, often encoded on mobile genetic elements. Yet, despite their prevalence, the impact of resistance genes and their mobility upon the dynamics of microbial communities remains largely unknown. Here we develop eco-evolutionary theory to explore how resistance genes alter the stability of diverse microbiomes in response to stressors. We show that adding resistance genes to a microbiome typically increases its overall stability, particularly for genes on mobile genetic elements with high transfer rates that efficiently spread resistance throughout the community. However, the impact of resistance genes upon the stability of individual taxa varies dramatically depending upon the identity of individual taxa, the mobility of the resistance gene, and the network of ecological interactions within the community. Nonmobile resistance genes can benefit susceptible taxa in cooperative communities yet damage those in competitive communities. Moreover, while the transfer of mobile resistance genes generally increases the stability of previously susceptible recipient taxa to perturbation, it can decrease the stability of the originally resistant donor taxon. We confirmed key theoretical predictions experimentally using competitive soil microcosm communities. Here the stability of a susceptible microbial community to perturbation was increased by adding mobile resistance genes encoded on conjugative plasmids but was decreased when these same genes were encoded on the chromosome. Together, these findings highlight the importance of the interplay between ecological interactions and horizontal gene transfer in driving the eco-evolutionary dynamics of diverse microbiomes.
Collapse
Affiliation(s)
- Katharine Z. Coyte
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (KZC); (MAB)
| | - Cagla Stevenson
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (KZC); (MAB)
| |
Collapse
|
5
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
6
|
Abstract
Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus. Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>105 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus. We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems.
Collapse
|
7
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Abstract
The horizontal transfer of mobile DNA is one of the signature moves of bacterial evolution, but the specific rules that govern this transfer remain elusive. In this PLOS Biology issue, Haudiquet and colleagues revealed that the interactions between mobile genetic elements and the bacterial capsule shape the horizontal flow of DNA in an important bacterial pathogen.
Collapse
Affiliation(s)
- Alfonso Santos-López
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | |
Collapse
|
9
|
Sklyar T, Kurahina N, Lavrentieva K, Burlaka V, Lykholat T, Lykholat O. Autonomic (Mobile) Genetic Elements of Bacteria and Their Hierarchy. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Smith EA, Newton ILG. Genomic Signatures of Honey Bee Association in an Acetic Acid Symbiont. Genome Biol Evol 2020; 12:1882-1894. [PMID: 32870981 PMCID: PMC7664317 DOI: 10.1093/gbe/evaa183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Biology, Indiana University, Bloomington
| | | |
Collapse
|
11
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
12
|
Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLoS One 2019; 14:e0223779. [PMID: 31671139 PMCID: PMC6822729 DOI: 10.1371/journal.pone.0223779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022] Open
Abstract
Soil microbes live within highly complex communities, where community composition, function, and evolution are the product of diverse interactions among community members. Analysis of the complex networks of interactions within communities has the potential to shed light on community stability, functioning, and evolution. However, we have little understanding of the variation in interaction networks among coevolved soil populations. We evaluated networks of antibiotic inhibitory interactions among sympatric Streptomyces communities from prairie soil. Inhibition networks differed significantly in key network characteristics from expectations under null models, largely reflecting variation among Streptomyces in the number of sympatric populations that they inhibited. Moreover, networks of inhibitory interactions within Streptomyces communities differed significantly from each other, suggesting unique network structures among soil communities from different locations. Analyses of tri-partite interactions (triads) showed that some triads were significantly over- or under- represented, and that communities differed in ‘preferred’ triads. These results suggest that local processes generate distinct structures among sympatric Streptomyces inhibition networks in soil. Understanding the properties of microbial interaction networks that generate competitive and functional capacities of soil communities will shed light on the ecological and coevolutionary history of sympatric populations, and provide a foundation for more effective management of inhibitory capacities of soil microbial communities.
Collapse
|
13
|
Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 2019; 8:e47612. [PMID: 31516122 PMCID: PMC6814407 DOI: 10.7554/elife.47612] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial populations vary in their stress tolerance and population structure depending upon whether growth occurs in well-mixed or structured environments. We hypothesized that evolution in biofilms would generate greater genetic diversity than well-mixed environments and lead to different pathways of antibiotic resistance. We used experimental evolution and whole genome sequencing to test how the biofilm lifestyle influenced the rate, genetic mechanisms, and pleiotropic effects of resistance to ciprofloxacin in Acinetobacter baumannii populations. Both evolutionary dynamics and the identities of mutations differed between lifestyle. Planktonic populations experienced selective sweeps of mutations including the primary topoisomerase drug targets, whereas biofilm-adapted populations acquired mutations in regulators of efflux pumps. An overall trade-off between fitness and resistance level emerged, wherein biofilm-adapted clones were less resistant than planktonic but more fit in the absence of drug. However, biofilm populations developed collateral sensitivity to cephalosporins, demonstrating the clinical relevance of lifestyle on the evolution of resistance.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Michelle R Scribner
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Daniel J Snyder
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
14
|
Hall JPJ, Harrison E, Brockhurst MA. Competitive species interactions constrain abiotic adaptation in a bacterial soil community. Evol Lett 2018; 2:580-589. [PMID: 30564441 PMCID: PMC6292705 DOI: 10.1002/evl3.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/29/2018] [Indexed: 01/27/2023] Open
Abstract
Studies of abiotic adaptation often consider single species in isolation, yet natural communities contain many coexisting species which could limit or promote abiotic adaptation. Here we show, using soil bacterial communities, that evolving in the presence of a competitor constrained abiotic adaptation. Specifically, Pseudomonas fluorescens evolved alone was fitter than P. fluorescens evolved alongside Pseudomonas putida, when P. putida was absent. Genome analyses indicated this was due to mutation of the acetate scavenger actP, which occurred exclusively, and almost universally, in single‐species‐evolved clones. actP disruption was associated with increased growth in soil compared with wild‐type actP, but this benefit was abolished when P. putida was present, suggesting a role for carbon scavenging transporters in species interactions, possibly through nutrient competition. Our results show that competitive species interactions can limit the evolutionary response to abiotic selection, because the fitness benefits of abiotic adaptive mutations were negated in more complex communities.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN United Kingdom.,Department of Biology University of York Wentworth Way York YO10 5DD United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| |
Collapse
|
15
|
Oladeinde A, Cook K, Orlek A, Zock G, Herrington K, Cox N, Plumblee Lawrence J, Hall C. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS One 2018; 13:e0202286. [PMID: 30169497 PMCID: PMC6118388 DOI: 10.1371/journal.pone.0202286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is a clinically-important serovar linked to food-borne illness, and commonly isolated from poultry. Investigations of a large, multistate outbreak in the USA in 2013 identified poultry litter (PL) as an important extra-intestinal environment that may have selected for specific S. Heidelberg strains. Poultry litter is a mixture of bedding materials and chicken excreta that contains chicken gastrointestinal (GI) bacteria, undigested feed, feathers, and other materials of chicken origin. In this study, we performed a series of controlled laboratory experiments which assessed the microevolution of two S. Heidelberg strains (SH-2813 and SH-116) in PL previously used to raise 3 flocks of broiler chickens. The strains are closely related at the chromosome level, differing from the reference genome by 109 and 89 single nucleotide polymorphisms/InDels, respectively. Whole genome sequencing was performed on 86 isolates recovered after 0, 1, 7 and 14 days of microevolution in PL. Only strains carrying an IncX1 (37kb), 2 ColE1 (4 and 6kb) and 1 ColpVC (2kb) plasmids survived more than 7 days in PL. Competition experiments showed that carriage of these plasmids was associated with increased fitness. This increased fitness was associated with an increased copy number of IncX1 and ColE1 plasmids. Further, all Col plasmid-bearing strains had hotspot mutations in 37 loci on the chromosome and in 3 loci on the IncX1 plasmid. Additionally, we observed a decrease in susceptibility to tobramycin, kanamycin, gentamicin, neomycin and fosfomycin for Col plasmid-bearing strains. Our study demonstrates how positive selection from poultry litter can change the evolutionary path of S. Heidelberg.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Alex Orlek
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Greg Zock
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kyler Herrington
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Nelson Cox
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Jodie Plumblee Lawrence
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Carolina Hall
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| |
Collapse
|