1
|
Liu YJ, Gong S, Wang YB, Yang ZL, Hu WH, Feng B. Biogeography and community assembly of soil fungi from alpine meadows in southwestern China show the importance of climatic selection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174477. [PMID: 38964412 DOI: 10.1016/j.scitotenv.2024.174477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Soil fungi are pivotal in alpine and arctic ecosystems that are vulnerable to climate changes. Previous studies have shown broad connections between soil fungi in the arctic and alpine regions, but most of these studies are mainly from Europe and North America, with more sporadic studies from East Asia. Currently, little is known about the biogeographic relationships between soil fungi in alpine meadows of southwestern China (AMSC) and other regions of the world. In addition, the regional-scale spatial patterns of fungal communities in the AMSC, as well as their driving factors and ecological processes, are also poorly understood. In this study, we collected roots and surrounding soils of two dominant ectomycorrhizal plants, Bistorta vivipara and B. macrophylla from the AMSC, and performed bioinformatic and statistical analyses based on high-throughput sequencing of ITS2 amplicons. We found that: (1) fungi from the AMSC were closely related with those from boreal forests and tundra, and saprotrophic fungi had higher dispersal potential than ectomycorrhizal fungi; (2) community compositions exhibited clear divergences among geographic regions and between root and soil samples; (3) climate was the predominant factor driving regional-scale spatial patterns but had less explanatory power for saprotrophic and total fungi from roots than those from soils; (4) homogeneous selection and drift were the key ecological processes governing community assembly, but in communities of saprotrophic and total fungi from soil samples, drift contributed less and its role was partially replaced by dispersal limitation. This study highlights the importance of climatic selection and stochastic processes on fungal community assembly in alpine regions, and emphasizes the significance of simultaneously investigating fungi with different trophic modes and from both roots and soils.
Collapse
Affiliation(s)
- Yong Jie Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China; School of Life Sciences, Yunnan University, China
| | - Sai Gong
- School of Horticulture, Anhui Agricultural University, China
| | - Yuan Bing Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Zhu L Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Wei Hong Hu
- School of Life Sciences, Yunnan University, China.
| | - Bang Feng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Zhou S, Dong Y, Yang H, Yang S, Julihaiti A, Liu Z, Nie T, Jiang A, Wu Y, An S. Effects of grazing exclusion on soil properties, fungal community structure, and diversity in different grassland types. Ecol Evol 2024; 14:e11056. [PMID: 38435014 PMCID: PMC10905231 DOI: 10.1002/ece3.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Soil fungi are involved in the decomposition of organic matter, and they alter soil structure and physicochemical properties and drive the material cycle and energy flow in terrestrial ecosystems. Fungal community assembly processes were dissimilar in different soil layers and significantly affected soil microbial community function and plant growth. Grazing exclusion is one of the most common measures used to restore degraded grasslands worldwide. However, changes in soil fungal community characteristics during grazing exclusion in different types of grasslands are unknown. Here, we investigated the effects of a 9-year grazing exclusion on soil properties, fungal community composition, and diversity in three grassland types (temperate desert, temperate steppe, and mountain meadow). The results showed that (1) in the 0-5 cm soil layer, grazing exclusion significantly increased the differences in SWC, SOC, KN, and N:P among the three grassland types, while the final pH, BD, TP, C:N, and C:P values were consistent with the results before exclusion. In the 5-10 cm soil layer, grazing exclusion significantly increased total phosphorus (TP) in temperate deserts by 34.1%, while significantly decreasing bulk density (BD) by 9.8% and the nitrogen: phosphorus ratio (N:P) by 47.1%. (2) The soil fungal community composition differed among the grassland types, For example, significant differences were found among the three grassland types for the Glomeromycota and Mucoromycota. (3) Under the influence of both grazing exclusion and grassland type, there was no significant change in soil fungal alpha diversity, but there were significant differences in fungal beta diversity. (4) Grassland type was the most important factor influencing changes in fungal community diversity, and vegetation cover and soil kjeldahl nitrogen were the main factors influencing fungal diversity. Our research provides a long-term perspective for better understanding and managing different grasslands, as well as a better scientific basis for future research on grass-soil-microbe interactions.
Collapse
Affiliation(s)
- Shijie Zhou
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
| | - Yiqiang Dong
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
- Key Laboratory of Grassland Resources and Ecology Autonomous RegionUrumqiXinjiangChina
- Key Laboratory of Grassland Resources and EcologyMinistry of EducationUrumqiChina
| | - Helong Yang
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
- Key Laboratory of Grassland Resources and Ecology Autonomous RegionUrumqiXinjiangChina
- Key Laboratory of Grassland Resources and EcologyMinistry of EducationUrumqiChina
| | - Suwen Yang
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
- Key Laboratory of Grassland Resources and Ecology Autonomous RegionUrumqiXinjiangChina
- Key Laboratory of Grassland Resources and EcologyMinistry of EducationUrumqiChina
| | | | - Zeyu Liu
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
| | - Tingting Nie
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
| | - Anjing Jiang
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
| | - Yue Wu
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
| | - Shazhou An
- School of GrasslandXinjiang Agricultural UniversityUrumqiChina
- Key Laboratory of Grassland Resources and Ecology Autonomous RegionUrumqiXinjiangChina
- Key Laboratory of Grassland Resources and EcologyMinistry of EducationUrumqiChina
| |
Collapse
|
3
|
Zhao P, Gao G, Ding G, Zhang Y, Ren Y. Fungal complexity and stability across afforestation areas in changing desert environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169398. [PMID: 38114026 DOI: 10.1016/j.scitotenv.2023.169398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The great achievements in combating desertification are attributed to large-scale afforestation, yet we lack verification of how the stability of the fungal community changes in afforestation areas in desert environments. Here, we present the fungal network structure from different niches (root and bulk soil) of plantations of Mongolian pine, a crucial species for afforestation introduced widely in desertification regions. We assessed changes in community complexity and stability of root-associated fungi (RAF) and soil fungi (SF) among different introduction sites: the Hulunbuir Desert (HB), the Horqin Desert (HQ) and the Mu Us Desert (MU). To illuminate the complexity and stability of the fungal network, the differences in topological properties, fungal function, and vegetation and environmental factors between introduction sites were fully considered. We showed that (1) the SF networks had more nodes and edges than the RAF networks. There was a lower ratio of negative:positive cohesion of RAF networks in HB and MU. For SF but not for RAF, across the three introduction sites, a higher modularity and ratio of negative:positive cohesion indicated higher stability. (2) Ectomycorrhizal (EcM) fungi were the dominant functional group in the RAF network (especially in HQ), and were only significantly correlated with vegetation factor. There was a higher relative abundance and number of OTUs of saprophytic fungi in the SF network and they showed positive correlations with soil nutrients. (3) RAF and SF network complexity and stability showed different responses to environmental and vegetation variables. The key determinant of the complexity and stability of the SF networks in Mongolian pine plantations was soil nutrients, followed by climate conditions. The composition and structure of the RAF community was closely related to host plants. Therefore, clarifying the complexity and stability of fungal communities in afforestation areas in changing desert environments is helpful for understanding the interactions between the environment, plants and fungi.
Collapse
Affiliation(s)
- Peishan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yue Ren
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Chen X, Yan D, Yu L, Zhang T. An Integrative Study of Mycobiome in Different Habitats from a High Arctic Region: Diversity, Distribution, and Functional Role. J Fungi (Basel) 2023; 9:jof9040437. [PMID: 37108892 PMCID: PMC10144742 DOI: 10.3390/jof9040437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
In the Arctic ecosystems, fungi are crucial for interactions between soil and plants, the cycling of nutrients, and the transport of carbon. To date, no studies have been conducted to thoroughly examine the mycobiome and its functional role in various habitats of the High Arctic region. The aim was to unravel the mycobiome in the nine habitats (i.e., soil, lichen, vascular plant, moss, freshwater, seawater, marine sediment, dung, and marine alga) in the Ny-Ålesund Region (Svalbard, High Arctic) using a high-throughput sequencing approach. A total of 10,419 ASVs were detected. Among them, 7535 ASVs were assigned to unidentified phyla, while the remaining 2884 ASVs were assigned to 11 phyla, 33 classes, 81 orders, 151 families, 278 genera, and 261 species that were known. The distribution of the mycobiome was driven by habitat specificity, indicating that habitat filtering is a crucial factor influencing the fungal assemblages at a local scale in this High Arctic region. Six growth forms and 19 fungal guilds were found. The ecological guild (e.g., lichenized, ectomycorrhizal) and growth form (e.g., yeast, thallus photosynthetic) varied significantly among various habitats. In addition, the occurrence of 31 fungal species that are considered to be potential pathogens was determined. These results will increase our understanding of fungal diversity and its functional significance in this distinctive High Arctic area and thereby establish the groundwork for prediction about how the mycobiome will alter in various environments as a result of anticipated climate change.
Collapse
Affiliation(s)
- Xiufei Chen
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Zhang ZY, Qiang FF, Liu GQ, Liu CH, Ai N. Distribution characteristics of soil microbial communities and their responses to environmental factors in the sea buckthorn forest in the water-wind erosion crisscross region. Front Microbiol 2023; 13:1098952. [PMID: 36704571 PMCID: PMC9871601 DOI: 10.3389/fmicb.2022.1098952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Soil microorganisms are an important part of forest ecosystems, and their community structure and ecological adaptations are important for explaining soil material cycles in the fragile ecological areas. We used high-throughput sequencing technology to examine the species composition and diversity of soil bacterial and fungal communities in sea buckthorn forests at five sites in the water-wind erosion crisscross in northern Shaanxi (about 400 km long). The results are described as follows: (1) The soil bacterial community of the sea buckthorn forest in the study region was mainly dominated by Actinobacteria, Proteobacteria, and Acidobacteria, and the fungi community was mainly dominated by Ascomycota. (2) The coefficient of variation of alpha diversity of microbial communities was higher in the 0-10 cm soil layer than in the 10-20 cm soil layer. (3) Soil electrical conductivity (36.1%), available phosphorous (AP) (21.0%), available potassium (16.2%), total nitrogen (12.7%), and the meteorological factors average annual maximum temperature (33.3%) and average annual temperature (27.1%) were identified as the main drivers of structural changes in the bacterial community. Available potassium (39.4%), soil organic carbon (21.4%), available nitrogen (AN) (13.8%), and the meteorological factors average annual maximum wind speed (38.0%) and average annual temperature (26.8%) were identified as the main drivers of structural changes in the fungal community. The explanation rate of soil factors on changes in bacterial and fungal communities was 26.6 and 12.0%, respectively, whereas that of meteorological factors on changes in bacterial and fungal communities was 1.22 and 1.17%, respectively. The combined explanation rate of environmental factors (soil and meteorological factors) on bacterial and fungal communities was 72.2 and 86.6%, respectively. The results of the study offer valuable insights into the diversity of soil microbial communities in the water-wind erosion crisscross region and the mechanisms underlying their interaction with environmental factors.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Fang-Fang Qiang
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Guang-Quan Liu
- China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Chang-Hai Liu
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Ning Ai
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China,China Institute of Water Resources and Hydropower Research, Beijing, China,*Correspondence: Ning Ai, ✉
| |
Collapse
|
6
|
Newsham KK, Misiak M, Goodall-Copestake WP, Dahl MS, Boddy L, Hopkins DW, Davey ML. Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Front Microbiol 2022; 13:1050372. [PMID: 36439821 PMCID: PMC9684652 DOI: 10.3389/fmicb.2022.1050372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2023] Open
Abstract
The climate of maritime Antarctica has altered since the 1950s. However, the effects of increased temperature, precipitation and organic carbon and nitrogen availability on the fungal communities inhabiting the barren and oligotrophic fellfield soils that are widespread across the region are poorly understood. Here, we test how warming with open top chambers (OTCs), irrigation and the organic substrates glucose, glycine and tryptone soy broth (TSB) influence a fungal community inhabiting an oligotrophic maritime Antarctic fellfield soil. In contrast with studies in vegetated soils at lower latitudes, OTCs increased fungal community alpha diversity (Simpson's index and evenness) by 102-142% in unamended soil after 5 years. Conversely, OTCs had few effects on diversity in substrate-amended soils, with their only main effects, in glycine-amended soils, being attributable to an abundance of Pseudogymnoascus. The substrates reduced alpha and beta diversity metrics by 18-63%, altered community composition and elevated soil fungal DNA concentrations by 1-2 orders of magnitude after 5 years. In glycine-amended soil, OTCs decreased DNA concentrations by 57% and increased the relative abundance of the yeast Vishniacozyma by 45-fold. The relative abundance of the yeast Gelidatrema declined by 78% in chambered soil and increased by 1.9-fold in irrigated soil. Fungal DNA concentrations were also halved by irrigation in TSB-amended soils. In support of regional- and continental-scale studies across climatic gradients, the observations indicate that soil fungal alpha diversity in maritime Antarctica will increase as the region warms, but suggest that the accumulation of organic carbon and nitrogen compounds in fellfield soils arising from expanding plant populations are likely, in time, to attenuate the positive effects of warming on diversity.
Collapse
Affiliation(s)
| | - Marta Misiak
- British Antarctic Survey, NERC, Cambridge, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - William P. Goodall-Copestake
- British Antarctic Survey, NERC, Cambridge, United Kingdom
- The Scottish Association for Marine Science, Oban, United Kingdom
| | | | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Marie L. Davey
- Department of Biology, University of Oslo, Oslo, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
7
|
The Endophytic Fungi Diversity, Community Structure, and Ecological Function Prediction of Sophora alopecuroides in Ningxia, China. Microorganisms 2022; 10:microorganisms10112099. [PMID: 36363690 PMCID: PMC9695620 DOI: 10.3390/microorganisms10112099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 02/04/2023] Open
Abstract
Sophora alopecuroides L. has great medicinal and ecological value in northwestern China. The host and its microbiota are mutually symbiotic, collectively forming a holobiont, conferring beneficial effects to the plant. However, the analysis of diversity, mycobiota composition, and the ecological function of endophytic fungi in the holobiont of S. alopecuroides is relatively lacking. In this article, the fungal community profiling of roots, stems, leaves, and seeds of S. alopecuroides (at the fruit maturity stage) from Huamachi and Baofeng in Ningxia, China were investigated based on the ITS1 region, using high-throughput sequencing technology. As a result, a total of 751 operational taxonomic units (OTUs) were obtained and further classified into 9 phyla, 27 classes, 66 orders, 141 families, 245 genera, and 340 species. The roots had the highest fungal richness and diversity, while the stems had the highest evenness and pedigree diversity. There also was a significant difference in the richness of the endophytic fungal community between root and seed (p < 0.05). The organ was the main factor affecting the community structure of endophytic fungi in S. alopecuroides. The genera of unclassified Ascomycota, Tricholoma, Apiotrichum, Alternaria, and Aspergillus made up the vast majority of relative abundance, which were common in all four organs as well. The dominant and endemic genera and biomarkers of endophytic fungi in four organs of S. alopecuroides were different and exhibited organ specificity or tissue preference. The endophytic fungi of S. alopecuroides were mainly divided into 15 ecological function groups, among which saprotroph was absolutely dominant, followed by mixotrophic and pathotroph, and the symbiotroph was the least. With this study, we revealed the diversity and community structure and predicted the ecological function of the endophytic fungi of S. alopecuroides, which provided a theoretical reference for the further development and utilization of the endophytic fungi resources of S. alopecuroides.
Collapse
|
8
|
Geml J, Leal CM, Nagy R, Sulyok J. Abiotic environmental factors drive the diversity, compositional dynamics and habitat preference of ectomycorrhizal fungi in Pannonian forest types. Front Microbiol 2022; 13:1007935. [PMID: 36312934 PMCID: PMC9597314 DOI: 10.3389/fmicb.2022.1007935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi are among the most diverse and dominant fungal groups in temperate forests and are crucial for ecosystem functioning of forests and their resilience toward disturbance. We carried out DNA metabarcoding of ECM fungi from soil samples taken at 62 sites in the Bükk Mountains in northern Hungary. The selected sampling sites represent the characteristic Pannonian forest types distributed along elevation (i.e., temperature), pH and slope aspect gradients. We compared richness and community composition of ECM fungi among forest types and explored relationships among environmental variables and ECM fungal alpha and beta diversity. The DNA sequence data generated in this study indicated strong correlations between fungal community composition and environmental variables, particularly with pH and soil moisture, with many ECM fungi showing preference for specific zonal, topographic or edaphic forest types. Several ECM fungal genera showed significant differences in richness among forest types and exhibited strong compositional differences mostly driven by differences in environmental factors. Despite the relatively high proportions of compositional variance explained by the tested environmental variables, a large proportion of the compositional variance remained unexplained, indicating that both niche (environmental filtering) and neutral (stochastic) processes shape ECM fungal community composition at landscape level. Our work provides unprecedented insights into the diversity, landscape-level distribution, and habitat preferences of ECM fungi in the Pannonian forests of Northern Hungary.
Collapse
Affiliation(s)
- József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary
- *Correspondence: József Geml,
| | - Carla Mota Leal
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Nagy
- Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Sulyok
- Biodiversity Protection Group, Bükk National Park Directorate, Eger, Hungary
| |
Collapse
|
9
|
Cui X, He H, Zhu F, Liu X, Ma Y, Xie W, Meng H, Zhang L. Community structure and co-occurrence network analysis of bacteria and fungi in wheat fields vs fruit orchards. Arch Microbiol 2022; 204:453. [PMID: 35786781 DOI: 10.1007/s00203-022-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Soil microorganisms play a vital role in biogeochemical processes and nutrient turnover in agricultural ecosystems. However, the information on how the structure and co-occurrence patterns of microbial communities response to the change of planting methods is still limited. In this study, a total of 34 soil samples were collected from 17 different fields of 2 planting types (wheat and orchards) along the Taige Canal in Yangtze River Delta. The structure of bacterial and fungal communities in soil were determined by 16S rRNA gene and ITS gene, respectively. The dominated bacteria were Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Bacteroidota, and Firmicutes. The relative abundances of Actinobacteriota and Firmicutes were higher in the orchards, while Chloroflexi and Nitrospirota were more abundant in wheat fields. Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungus in both soil types. Diversity of bacterial and fungal communities were greater in the wheat fields than in orchards. Statistical analyses showed that pH was the main factor shaping the community structure, and parameters of water content (WC), total organic carbon (TOC) and total nitrogen (TN) had great influences on community structure. Moreover, high co-occurrence patterns of bacterial and fungal were confirmed in both wheat fields and orchards. Network analyses showed that both wheat fields and orchards occurred modular structure, including nodes of Acidobacteriota, Chloroflexi, Gemmatimonadota, Nitrospirota and Ascomycota. In summary, our work showed the co-occurrence network and the convergence/divergence of microbial community structure in wheat fields and orchards, giving a comprehensive understanding of the microbe-microbe interaction during planting methods' changes.
Collapse
Affiliation(s)
- Xinyu Cui
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiaobo Liu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, 515063, Guangdong, People's Republic of China
| | - You Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wenming Xie
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| |
Collapse
|
10
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
11
|
Masumoto S, Kitagawa R, Nishizawa K, Kaneko R, Osono T, Hasegawa M, Matsuoka S, Uchida M, Mori AS. Functionally explicit partitioning of plant β-diversity reveal soil fungal assembly in the subarctic tundra. FEMS Microbiol Ecol 2021; 97:6366230. [PMID: 34494103 DOI: 10.1093/femsec/fiab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
Metabarcoding technologies for soil fungal DNA pools have enabled to capture the diversity of fungal community and the agreement of their β-diversity with plant β-diversity. However, processes underlying the synchrony of the aboveground-belowground biodiversity is still unclear. By using partitioning methods for plant β-diversity, this study explored the process driving synchrony in tundra ecosystems, in which drastic vegetation shifts are observed with climate warming. Our methods based on Baselga's partitioning enabled the division of plant β-diversity into two phenomena and three functional components. Correlation of fungal β-diversity with the components of plant β-diversity showed that the spatial replacement of fungi was promoted by plant species turnover, in particular, plant species turnover with functional exchange. In addition, spatial variety of graminoid or forbs species, rather than shrubs, enhanced fungal β-diversity. These results suggest the importance of small-scale factors such as plant-fungal interactions or local environments modified by plants for the fungal community assemblage. The process-based understanding of community dynamics of plants and fungi allows us to predict the ongoing shrub encroachment in the Arctic region, which could weaken the aboveground-belowground synchrony.
Collapse
Affiliation(s)
- Shota Masumoto
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan
| | - Ryo Kitagawa
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
| | - Keita Nishizawa
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan
| | - Ryo Kaneko
- National Institute of Polar Research, Tokyo 190-8518, Japan
| | - Takashi Osono
- Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| | - Motohiro Hasegawa
- Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| | - Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Hyogo, 650-0047, Japan
| | - Masaki Uchida
- National Institute of Polar Research, Tokyo 190-8518, Japan.,School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, Tokyo 190-8518, Japan
| | - Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan
| |
Collapse
|
12
|
Abundance and diversity of soil nematode community at different altitudes in cold-temperate montane forests in northeast China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Canini F, Zucconi L, Coleine C, D'Alò F, Onofri S, Geml J. Expansion of shrubs could result in local loss of soil bacterial richness in Western Greenland. FEMS Microbiol Ecol 2021; 96:5865694. [PMID: 32609325 DOI: 10.1093/femsec/fiaa089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Climate warming in Greenland is facilitating the expansion of shrubs across wide areas of tundra. Given the close association between plants and soil microorganisms and the important role of soil bacteria in ecosystem functioning, it is of utmost importance to characterize microbial communities of arctic soil habitats and assess the influence of plant edaphic factors on their composition. We used 16S rRNA gene amplicons to explore the bacterial assemblages of three different soil habitats representative of a plant coverage gradient: bare ground, biological soil crusts dominated by mosses and lichens and vascular vegetation dominated by shrubs. We investigated how bacterial richness and community composition were affected by the vegetation coverage, and soil pH, moisture and carbon (C), nitrogen (N) and phosphorus (P) contents. Bacterial richness did not correlate with plant coverage complexity, while community structure varied between habitats. Edaphic variables affected both the taxonomic richness and community composition. The high number of Amplicon Sequence Variants (ASVs) indicators of bare ground plots suggests a risk of local bacterial diversity loss due to expansion of vascular vegetation.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.,Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - József Geml
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands.,MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Eger, Hungary
| |
Collapse
|
14
|
Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles 2020; 24:821-829. [PMID: 32974723 DOI: 10.1007/s00792-020-01197-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Fungi are widely distributed in all terrestrial ecosystems, and they are essential to the recycling of nutrients in all terrestrial habitats on earth. We wanted to determine the relationship between soil fungal communities and geochemical factors (geographical location and soil physicochemical properties) in three widely separated geographical regions (the Antarctic, Arctic, and Tibet Plateau). Using high-throughput Illumina amplicon sequencing, we characterized the fungal communities in 53 soil samples collected from the three regions. The fungal richness and diversity indices were not significantly different among the three regions. However, fungal community composition and many fungal taxa (Thelebolales, Verrucariales, Sordariales, Chaetothyriales, Hypocreales, Pleosporales, Capnodiales, and Dothideales) significantly differed among three regions. Furthermore, geographical location (latitude and altitude) and six soil physicochemical properties (SiO42--Si, pH, NO3--N, organic nitrogen, NO2--N, and organic carbon) were significant geochemical factors those were correlated with the soil fungal community composition. These results suggest that many geochemical factors influence the distribution of the fungal species within the Antarctic, Arctic, and Tibet Plateau.
Collapse
|
15
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
16
|
Canini F, Geml J, D'Acqui LP, Selbmann L, Onofri S, Ventura S, Zucconi L. Exchangeable cations and pH drive diversity and functionality of fungal communities in biological soil crusts from coastal sites of Victoria Land, Antarctica. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Chen W, Wang J, Meng Z, Xu R, Chen J, Zhang Y, Hu T. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. THE NEW PHYTOLOGIST 2020; 226:1129-1143. [PMID: 31863600 DOI: 10.1111/nph.16390] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The plant richness-productivity relationship is a central subject in ecology, yet the mechanisms behind this pattern remain debated. Soil fungi are closely associated with the dynamics of plant communities, however empirical evidence on how fungal communities integrate into the richness-productivity relationships of natural environments is lacking. We used Illumina high-throughput sequencing to identify rhizosphere fungal communities across a natural plant richness gradient at two sites with different fertility conditions, and related the subsequent information to plant richness and productivity to elucidate the role of fungal guilds in integrating the linkages of both plant components. Saprotrophs, mycorrhizal fungi and potential plant pathogens interacted differently between the sites, with saprotrophic and mycorrhizal fungal abundances being positively correlated at the high-nutrient site and abundances of mycorrhizal fungi and potential plant pathogens being negatively correlated at the low-nutrient site. The synergistic associations between these fungal guilds with plant richness and productivity operated in concert to promote positive richness-productivity relationships. Our findings provide empirical evidence for the importance of soil fungal guilds in integrating the linkages of plant richness and productivity, and suggest that future work incorporating soil fungal communities into richness-productivity relationships would advance our mechanistic understanding of their linkages.
Collapse
Affiliation(s)
- Wenqing Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianyu Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zexin Meng
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ran Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingjun Zhang
- Department of Grassland Science, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
18
|
Hannula SE, Träger S. Soil fungal guilds as important drivers of the plant richness-productivity relationship. THE NEW PHYTOLOGIST 2020; 226:947-949. [PMID: 32222103 PMCID: PMC7216941 DOI: 10.1111/nph.16523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article is a Commentary on https://doi.org/10.1111/nph.16390.
Collapse
Affiliation(s)
- S. Emilia Hannula
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBthe Netherlands
| | - Sabrina Träger
- Department of BotanyInstitute of Ecology and Earth SciencesUniversity of TartuLai 40Tartu51005Estonia
| |
Collapse
|
19
|
Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, Gao L, Wang M, Ruan J, Guo S, Vandenkoornhuyse P, Shen Q. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. THE NEW PHYTOLOGIST 2020; 226:232-243. [PMID: 31778576 DOI: 10.1111/nph.16345] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
In the processes controlling ecosystem fertility, fungi are increasingly acknowledged as key drivers. However, our understanding of the rules behind fungal community assembly regarding the effect of soil fertility level remains limited. Using soil samples from typical tea plantations spanning c. 2167 km north-east to south-west across China, we investigated the assemblage complexity and assembly processes of 140 fungal communities along a soil fertility gradient. The community dissimilarities of total fungi and fungal functional guilds increased with increasing soil fertility index dissimilarity. The symbiotrophs were more sensitive to variations in soil fertility compared with pathotrophs and saprotrophs. Fungal networks were larger and showed higher connectivity as well as greater potential for inter-module connection in more fertile soils. Environmental factors had a slightly greater influence on fungal community composition than spatial factors. Species abundance fitted the Zipf-Mandelbrot distribution (niche-based mechanisms), which provided evidence for deterministic-based processes. Overall, the soil fungal communities in tea plantations responded in a deterministic manner to soil fertility, with high fertility correlated with complex fungal community assemblages. This study provides new insights that might contribute to predictions of fungal community complexity.
Collapse
Affiliation(s)
- Junjie Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Zhaojie Chen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Li
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisheng Liu
- Hengyang Red Soil Experimental Station, Chinese Academy of Agricultural Sciences, Hengyang, 421001, China
| | - Limin Gao
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Shiwei Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Philippe Vandenkoornhuyse
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Liu L, Zhu K, Wurzburger N, Zhang J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 2020. [DOI: 10.1002/ecs2.2999] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Lan Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration School of Ecological and Environmental Sciences East China Normal University Shanghai 200241 China
- Department of Environmental Studies University of California Santa Cruz California 95064 USA
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Kai Zhu
- Department of Environmental Studies University of California Santa Cruz California 95064 USA
| | - Nina Wurzburger
- Odum School of Ecology University of Georgia Athens Georgia 30602 USA
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration School of Ecological and Environmental Sciences East China Normal University Shanghai 200241 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| |
Collapse
|
21
|
Arctic Greening Caused by Warming Contributes to Compositional Changes of Mycobiota at the Polar Urals. FORESTS 2019. [DOI: 10.3390/f10121112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The long-term influence of climate change on spatio-temporal dynamics of the Polar mycobiota was analyzed on the eastern macro slope of the Polar Urals (Sob River valley and Mountain Slantsevaya) over a period of 60 years. The anthropogenic impact is minimal in the study area. Effects of environmental warming were addressed as changes in treeline and forest communities (greening of the vegetation). With warming, permafrost is beginning to thaw, and as it thaws, it decomposes. Therefore, we also included depth of soil thawing and litter decomposition in our study. Particular attention was paid to the reaction of aphyllophoroid fungal communities concerning these factors. Our results provide evidence for drastic changes in the mycobiota due to global warming. Fungal community composition followed changes of the vegetation, which was transforming from forest-tundra to northern boreal type forests during the last 60 years. Key fungal groups of the ongoing borealization and important indicator species are discussed. Increased economic activity in the area may lead to deforestation, destruction of swamps, and meadows. However, this special environment provides important services such as carbon sequestration, soil formation, protecting against flood risks, and filtering of air. In this regard, we propose to include the studied territory in the Polarnouralsky Natural Park.
Collapse
|
22
|
Canini F, Zucconi L, Pacelli C, Selbmann L, Onofri S, Geml J. Vegetation, pH and Water Content as Main Factors for Shaping Fungal Richness, Community Composition and Functional Guilds Distribution in Soils of Western Greenland. Front Microbiol 2019; 10:2348. [PMID: 31681213 PMCID: PMC6797927 DOI: 10.3389/fmicb.2019.02348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/26/2019] [Indexed: 01/29/2023] Open
Abstract
Fungi are the most abundant and one of the most diverse components of arctic soil ecosystems, where they are fundamental drivers of plant nutrient acquisition and recycling. Nevertheless, few studies have focused on the factors driving the diversity and functionality of fungal communities associated with these ecosystems, especially in the scope of global warming that is particularly affecting Greenland and is leading to shrub expansion, with expected profound changes of soil microbial communities. We used soil DNA metabarcoding to compare taxonomic and functional composition of fungal communities in three habitats [bare ground (BG), biological soil crusts (BSC), and vascular vegetation (VV) coverage] in Western Greenland. Fungal richness increased with the increasing complexity of the coverage, but BGs and BSCs samples showed the highest number of unique OTUs. Differences in both fungal community composition and distribution of functional guilds identified were correlated with edaphic factors (mainly pH and water content), in turn connected with the different type of coverage. These results suggest also possible losses of diversity connected to the expansion of VV and possible interactions among the members of different functional guilds, likely due to the nutrient limitation, with potential effects on elements recycling.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Section of Mycology, Italian National Antarctic Museum (MNA), Genoa, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - József Geml
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, Netherlands
- Faculty of Science, Leiden University, Leiden, Netherlands
| |
Collapse
|
23
|
Voříšková J, Elberling B, Priemé A. Fast response of fungal and prokaryotic communities to climate change manipulation in two contrasting tundra soils. ENVIRONMENTAL MICROBIOME 2019; 14:6. [PMID: 33902718 PMCID: PMC7989089 DOI: 10.1186/s40793-019-0344-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Climate models predict substantial changes in temperature and precipitation patterns across Arctic regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times during the plant-growing season. RESULTS The analysis revealed that soil microbial communities from two tundra sites differed from each other due to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal communities showed changes in both taxonomic and ecological groups in response to climate manipulation. However, the changes were not pronounced at all sampling times which points to the need of multiple sampling in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased snow cover were manifested after snow had melted. CONCLUSIONS We demonstrated rapid response of soil fungal and bacterial communities to short-term climate manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that fungal community composition was more affected by increased snow cover compared to prokaryotes indicating fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have implications for organic matter turnover in tundra soils under future climate.
Collapse
Affiliation(s)
- Jana Voříšková
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
- Ecology Department, Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Anders Priemé
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Geml J. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Grau O, Saravesi K, Ninot JM, Geml J, Markkola A, Ahonen SHK, Peñuelas J. Encroachment of shrubs into subalpine grasslands in the Pyrenees modifies the structure of soil fungal communities and soil properties. FEMS Microbiol Ecol 2019; 95:5370081. [DOI: 10.1093/femsec/fiz028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Oriol Grau
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, 08193, Cerdanyola del Vallès, Catalonia, Spain
- CREAF, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Karita Saravesi
- Department of Ecology and Genetics, P.O. Box 3000, FI-90014, University of Oulu, Oulu, Finland
| | - Josep M Ninot
- Institute for Research in Biodiversity (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - József Geml
- Naturalis Biodiversity Center, Vondellaan 55, P.O. Box 9517, Leiden, The Netherlands
- Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Annamari Markkola
- Department of Ecology and Genetics, P.O. Box 3000, FI-90014, University of Oulu, Oulu, Finland
| | - Saija HK Ahonen
- Department of Ecology and Genetics, P.O. Box 3000, FI-90014, University of Oulu, Oulu, Finland
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, 08193, Cerdanyola del Vallès, Catalonia, Spain
- CREAF, 08193, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
26
|
Tedersoo L, Drenkhan R, Anslan S, Morales‐Rodriguez C, Cleary M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol Ecol Resour 2019; 19:47-76. [PMID: 30358140 PMCID: PMC7379260 DOI: 10.1111/1755-0998.12959] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
High-throughput identification technologies provide efficient tools for understanding the ecology and functioning of microorganisms. Yet, these methods have been only rarely used for monitoring and testing ecological hypotheses in plant pathogens and pests in spite of their immense importance in agriculture, forestry and plant community dynamics. The main objectives of this manuscript are the following: (a) to provide a comprehensive overview about the state-of-the-art high-throughput quantification and molecular identification methods used to address population dynamics, community ecology and host associations of microorganisms, with a specific focus on antagonists such as pathogens, viruses and pests; (b) to compile available information and provide recommendations about specific protocols and workable primers for bacteria, fungi, oomycetes and insect pests; and (c) to provide examples of novel methods used in other microbiological disciplines that are of great potential use for testing specific biological hypotheses related to pathology. Finally, we evaluate the overall perspectives of the state-of-the-art and still evolving methods for diagnostics and population- and community-level ecological research of pathogens and pests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum and Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Rein Drenkhan
- Institute of Forestry and Rural EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sten Anslan
- Natural History Museum and Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | | - Michelle Cleary
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
27
|
McCormick MK, Whigham DF, Canchani-Viruet A. Mycorrhizal fungi affect orchid distribution and population dynamics. THE NEW PHYTOLOGIST 2018; 219:1207-1215. [PMID: 29790578 DOI: 10.1111/nph.15223] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 05/03/2023]
Abstract
Symbioses are ubiquitous in nature and influence individual plants and populations. Orchids have life history stages that depend fully or partially on fungi for carbon and other essential resources. As a result, orchid populations depend on the distribution of orchid mycorrhizal fungi (OMFs). We focused on evidence that local-scale distribution and population dynamics of orchids can be limited by the patchy distribution and abundance of OMFs, after an update of an earlier review confirmed that orchids are rarely limited by OMF distribution at geographic scales. Recent evidence points to a relationship between OMF abundance and orchid density and dormancy, which results in apparent density differences. Orchids were more abundant, less likely to enter dormancy, and more likely to re-emerge when OMF were abundant. We highlight the need for additional studies on OMF quantity, more emphasis on tropical species, and development and application of next-generation sequencing techniques to quantify OMF abundance in substrates and determine their function in association with orchids. Research is also needed to distinguish between OMFs and endophytic fungi and to determine the function of nonmycorrhizal endophytes in orchid roots. These studies will be especially important if we are to link orchids and OMFs in efforts to inform conservation.
Collapse
Affiliation(s)
- Melissa K McCormick
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Dennis F Whigham
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Armando Canchani-Viruet
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
- Universidad Metropolitana, Escuela de Ciencias y Tecnología, 1399 Avenida Ana G. Mendez, San Juan, 00926, Puerto Rico
| |
Collapse
|
28
|
Coleine C, Zucconi L, Onofri S, Pombubpa N, Stajich JE, Selbmann L. Sun Exposure Shapes Functional Grouping of Fungi in Cryptoendolithic Antarctic Communities. Life (Basel) 2018; 8:E19. [PMID: 29865244 PMCID: PMC6027399 DOI: 10.3390/life8020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Antarctic cryptoendolithic microbial communities dominate ice-free areas of continental Antarctica, among the harshest environments on Earth. The endolithic lifestyle is a remarkable adaptation to the exceptional environmental extremes of this area, which is considered the closest terrestrial example to conditions on Mars. Recent efforts have attempted to elucidate composition of these extremely adapted communities, but the functionality of these microbes have remained unexplored. We have tested for interactions between measured environmental characteristics, fungal community membership, and inferred functional classification of the fungi present and found altitude and sun exposure were primary factors. Sandstone rocks were collected in Victoria Land, Antarctica along an altitudinal gradient from 834 to 3100 m a.s.l.; differently sun-exposed rocks were selected to test the influence of this parameter on endolithic settlement. Metabarcoding targeting the fungal internal transcribed spacer region 1 (ITS1) was used to catalogue the species found in these communities. Functional profile of guilds found in the samples was associated to species using FUNGuild and variation in functional groups compared across sunlight exposure and altitude. Results revealed clear dominance of lichenized and stress-tolerant fungi in endolithic communities. The main variations in composition and abundance of functional groups among sites correlated to sun exposure, but not to altitude.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa 16166, Italy.
| |
Collapse
|
29
|
Geml J, Wagner MR. Out of sight, but no longer out of mind - towards an increased recognition of the role of soil microbes in plant speciation. THE NEW PHYTOLOGIST 2018; 217:965-967. [PMID: 29334601 DOI: 10.1111/nph.14979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- József Geml
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Maggie R Wagner
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|