1
|
Car C, Gilles A, Goujon E, Muller MLD, Camoin L, Frelon S, Burraco P, Granjeaud S, Baudelet E, Audebert S, Orizaola G, Armengaud J, Tenenhaus A, Garali I, Bonzom JM, Armant O. Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone. BMC Biol 2023; 21:164. [PMID: 37525144 PMCID: PMC10391870 DOI: 10.1186/s12915-023-01659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species' population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. RESULTS We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. CONCLUSIONS Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - André Gilles
- UMR 1467 RECOVER, Aix-Marseille Université, INRAE, Centre Saint-Charles, Marseille, France.
| | - Elen Goujon
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
- Laboratoire Des Signaux Et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, 91190, Gif-Sur-Yvette, France
| | - Marie-Laure Delignette Muller
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Luc Camoin
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Sandrine Frelon
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Centre, Uppsala University, 75236, Uppsala, Sweden
- Doñana Biological Station (CSIC), Seville, Spain
| | - Samuel Granjeaud
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Emilie Baudelet
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Centre, Uppsala University, 75236, Uppsala, Sweden
- IMIB-Biodiversity Research Institute, University of Oviedo, 33600, Mieres-Asturias, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo-Asturias, Spain
| | - Jean Armengaud
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-Sur-Cèze, France
| | - Arthur Tenenhaus
- Laboratoire Des Signaux Et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, 91190, Gif-Sur-Yvette, France
| | - Imène Garali
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France
| | - Olivier Armant
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, France.
- PSE-SANTE/SESANE/LRTox, Fontenay Aux Roses, France.
| |
Collapse
|
2
|
Martínez M, Harms L, Abele D, Held C. Mitochondrial Heteroplasmy and PCR Amplification Bias Lead to Wrong Species Delimitation with High Confidence in the South American and Antarctic Marine Bivalve Aequiyoldia eightsii Species Complex. Genes (Basel) 2023; 14:genes14040935. [PMID: 37107693 PMCID: PMC10138075 DOI: 10.3390/genes14040935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The species delimitation of the marine bivalve species complex Aequiyoldia eightsii in South America and Antarctica is complicated by mitochondrial heteroplasmy and amplification bias in molecular barcoding. In this study, we compare different data sources (mitochondrial cytochrome c oxidase subunit I (COI) sequences; nuclear and mitochondrial SNPs). Whilst all the data suggest that populations on either side of the Drake Passage belong to different species, the picture is less clear within Antarctic populations, which harbor three distinct mitochondrial lineages (p-dist ≈ 6%) that coexist in populations and in a subset of individuals with heteroplasmy. Standard barcoding procedures lead to amplification bias favoring either haplotype unpredictably and thus overestimate the species richness with high confidence. However, nuclear SNPs show no differentiation akin to the trans-Drake comparison, suggesting that the Antarctic populations represent a single species. Their distinct haplotypes likely evolved during periods of temporary allopatry, whereas recombination eroded similar differentiation patterns in the nuclear genome after secondary contact. Our study highlights the importance of using multiple data sources and careful quality control measures to avoid bias and increase the accuracy of molecular species delimitation. We recommend an active search for mitochondrial heteroplasmy and haplotype-specific primers for amplification in DNA-barcoding studies.
Collapse
Affiliation(s)
- Mariano Martínez
- Functional Ecology, Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Oceanografía y Ecología Marina, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lars Harms
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Herrstrasse 231, 26129 Oldenburg, Germany
| | - Doris Abele
- Functional Ecology, Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Christoph Held
- Functional Ecology, Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
3
|
Yu X, Chen F, Chen Z, Wei P, Song X, Liu C, Liu T, Li X, Liu X. Genetic diversity and gene expression diversity shape the adaptive pattern of the aquatic plant Batrachium bungei along an altitudinal gradient on the Qinghai-Tibet plateau. PLANT MOLECULAR BIOLOGY 2023; 111:275-290. [PMID: 36534297 DOI: 10.1007/s11103-022-01326-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/24/2022] [Indexed: 05/22/2023]
Abstract
It is an intriguing issue of evolutionary biology how genetic diversity and gene expression diversity shape the adaptive patterns. Comparative transcriptomic studies of wild populations in extreme environments provide critical insights into the relative contribution of genetic and expressive components. In this study, we analyzed the genetic diversity and gene expression diversity of 20 populations of the aquatic plant Batrachium bungei along elevations ranging from 2690 to 4896 m on the Qinghai-Tibet plateau (QTP). Based on single nucleotide polymorphisms (SNPs) and gene expression data from 100 individuals of B. bungei, we found that variation in genetic sequence was more sensitive to detect weak differentiation than gene expression. Using 292,613 high-quality SNPs, we documented a significant phylogeographical structure, a low within-population genetic diversity, and a high inter-population genetic differentiation in B. bungei populations. Analysis of relationship between geographic distance, genetic distance, and gene expression similarity showed that geographic isolation shaped gene flow patterns but not gene expression patterns. We observed a negative relationship between genetic diversity and gene expression diversity within and among B. bungei populations, and we demonstrated that as environmental conditions worsen with increasing altitude, genetic diversity played an increased role in maintaining the stability of populations, while the corresponding role of gene expression diversity decreased. These results suggested that genetic diversity and gene expression diversity might act as a complementary mechanism contributing to the long-term survival of B. bungei in extreme environments.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Feifei Chen
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoli Song
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Tailong Liu
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China.
| |
Collapse
|
4
|
Liu L, Wang Z, Su Y, Wang T. Population transcriptomic sequencing reveals allopatric divergence and local adaptation in Pseudotaxus chienii (Taxaceae). BMC Genomics 2021; 22:388. [PMID: 34039278 PMCID: PMC8157689 DOI: 10.1186/s12864-021-07682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Elucidating the effects of geography and selection on genetic variation is critical for understanding the relative importance of adaptation in driving differentiation and identifying the environmental factors underlying its occurrence. Adaptive genetic variation is common in tree species, especially widely distributed long-lived species. Pseudotaxus chienii can occupy diverse habitats with environmental heterogeneity and thus provides an ideal material for investigating the process of population adaptive evolution. Here, we characterize genetic and expression variation patterns and investigate adaptive genetic variation in P. chienii populations. RESULTS We generated population transcriptome data and identified 13,545 single nucleotide polymorphisms (SNPs) in 5037 unigenes across 108 individuals from 10 populations. We observed lower nucleotide diversity (π = 0.000701) among the 10 populations than observed in other gymnosperms. Significant negative correlations between expression diversity and nucleotide diversity in eight populations suggest that when the species adapts to the surrounding environment, gene expression and nucleotide diversity have a reciprocal relationship. Genetic structure analyses indicated that each distribution region contains a distinct genetic group, with high genetic differentiation among them due to geographical isolation and local adaptation. We used FST outlier, redundancy analysis, and latent factor mixed model methods to detect molecular signatures of local adaptation. We identified 244 associations between 164 outlier SNPs and 17 environmental variables. The mean temperature of the coldest quarter, soil Fe and Cu contents, precipitation of the driest month, and altitude were identified as the most important determinants of adaptive genetic variation. Most candidate unigenes with outlier signatures were related to abiotic and biotic stress responses, and the monoterpenoid biosynthesis and ubiquitin-mediated proteolysis KEGG pathways were significantly enriched in certain populations and deserve further attention in other long-lived trees. CONCLUSIONS Despite the strong population structure in P. chienii, genomic data revealed signatures of divergent selection associated with environmental variables. Our research provides SNPs, candidate unigenes, and biological pathways related to environmental variables to facilitate elucidation of the genetic variation in P. chienii in relation to environmental adaptation. Our study provides a promising tool for population genomic analyses and insights into the molecular basis of local adaptation.
Collapse
Affiliation(s)
- Li Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, Guangdong, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Miao J, Feng Q, Li Y, Zhao Q, Zhou C, Lu H, Fan D, Yan J, Lu Y, Tian Q, Li W, Weng Q, Zhang L, Zhao Y, Huang T, Li L, Huang X, Sang T, Han B. Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome. Nat Commun 2021; 12:2458. [PMID: 33911077 PMCID: PMC8080599 DOI: 10.1038/s41467-021-22738-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/12/2021] [Indexed: 11/09/2022] Open
Abstract
Miscanthus, a rhizomatous perennial plant, has great potential for bioenergy production for its high biomass and stress tolerance. We report a chromosome-scale assembly of Miscanthus lutarioriparius genome by combining Oxford Nanopore sequencing and Hi-C technologies. The 2.07-Gb assembly covers 96.64% of the genome, with contig N50 of 1.71 Mb. The centromere and telomere sequences are assembled for all 19 chromosomes and chromosome 10, respectively. Allotetraploid origin of the M. lutarioriparius is confirmed using centromeric satellite repeats. The tetraploid genome structure and several chromosomal rearrangements relative to sorghum are clearly demonstrated. Tandem duplicate genes of M. lutarioriparius are functional enriched not only in terms related to stress response, but cell wall biosynthesis. Gene families related to disease resistance, cell wall biosynthesis and metal ion transport are greatly expanded and evolved. The expansion of these families may be an important genomic basis for the enhancement of remarkable traits of M. lutarioriparius.
Collapse
Affiliation(s)
- Jiashun Miao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yan Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Hengyun Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Juan Yan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Wenjun Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Laigeng Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China.
| |
Collapse
|
6
|
Zhao X, Kang L, Wang Q, Lin C, Liu W, Chen W, Sang T, Yan J. Water Use Efficiency and Stress Tolerance of the Potential Energy Crop Miscanthus lutarioriparius Grown on the Loess Plateau of China. PLANTS 2021; 10:plants10030544. [PMID: 33805780 PMCID: PMC8001145 DOI: 10.3390/plants10030544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
As a potential energy crop with high biomass yield, Miscanthus lutarioriparius (M. lutarioriparius), endemic to the Long River Range in central China, needs to be investigated for its acclimation to stressful climatic and soil conditions often found on the marginal land. In this study, traits related to acclimation and yield, including survival rates, plant height (PH), stem diameter (SD), tiller number (TN), water use efficiency (WUE), and photosynthetic rates (A), were examined for 41 M. lutarioriparius populations that transplanted to the arid and cold Loess Plateau of China. The results showed that the average survival rate of M. lutarioriparius populations was only 4.16% over the first winter but the overwinter rate increased to 35.03% after the second winter, suggesting that plants having survived the first winter could have acclaimed to the low temperature. The strikingly high survival rates over the second winter were found to be 95.83% and 80.85%, respectively, for HG18 and HG39 populations. These populations might be especially valuable for the selection of energy crops for such an area. Those individuals surviving for the two consecutive winters showed significantly higher WUE than those measured after the first winter. The high WUE and low stomatal conductance (gs) observed in survived individuals could have been responsible for their acclimation to this new and harsh environment. A total of 61 individuals with productive growth traits and strong resistance to cold and drought were identified for further energy crop development. This study showed that the variation of M. lutarioriparius held great potential for developing energy crops following continuous field selection.
Collapse
Affiliation(s)
- Xuhong Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Kang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
| | - Qian Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Cong Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
| | - Wei Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Wenli Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
7
|
Thorstensen MJ, Jeffrey JD, Treberg JR, Watkinson DA, Enders EC, Jeffries KM. Genomic signals found using RNA sequencing show signatures of selection and subtle population differentiation in walleye ( Sander vitreus) in a large freshwater ecosystem. Ecol Evol 2020; 10:7173-7188. [PMID: 32760520 PMCID: PMC7391302 DOI: 10.1002/ece3.6418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing is an effective approach for studying aquatic species yielding both physiological and genomic data. However, its population genetic applications are not well-characterized. We investigate this possible role for RNA sequencing for population genomics in Lake Winnipeg, Manitoba, Canada, walleye (Sander vitreus). Lake Winnipeg walleye represent the largest component of the second-largest freshwater fishery in Canada. In the present study, large female walleye were sampled via nonlethal gill biopsy over two years at three spawning sites representing a latitudinal gradient in the lake. Genetic variation from sequenced mRNA was analyzed for neutral and adaptive markers to investigate population structure and possible adaptive variation. We find low population divergence (F ST = 0.0095), possible northward gene flow, and outlier loci that vary latitudinally in transcripts associated with cell membrane proteins and cytoskeletal function. These results indicate that Lake Winnipeg walleye may be effectively managed as a single demographically connected metapopulation with contributing subpopulations and suggest genomic differences possibly underlying observed phenotypic differences. Despite its high cost relative to other genotyping methods, RNA sequencing data can yield physiological in addition to genetic information discussed here. We therefore argue that it is useful for addressing diverse molecular questions in the conservation of freshwater species.
Collapse
Affiliation(s)
| | | | - Jason R. Treberg
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| | | | - Eva C. Enders
- Freshwater Institute, Fisheries and Oceans CanadaWinnipegMBCanada
| | - Ken M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| |
Collapse
|
8
|
Utilization of Tissue Ploidy Level Variation in de Novo Transcriptome Assembly of Pinus sylvestris. G3-GENES GENOMES GENETICS 2019; 9:3409-3421. [PMID: 31427456 PMCID: PMC6778806 DOI: 10.1534/g3.119.400357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared to angiosperms, gymnosperms lag behind in the availability of assembled and annotated genomes. Most genomic analyses in gymnosperms, especially conifer tree species, rely on the use of de novo assembled transcriptomes. However, the level of allelic redundancy and transcript fragmentation in these assembled transcriptomes, and their effect on downstream applications have not been fully investigated. Here, we assessed three assembly strategies for short-reads data, including the utility of haploid megagametophyte tissue during de novo assembly as single-allele guides, for six individuals and five different tissues in Pinus sylvestris. We then contrasted haploid and diploid tissue genotype calls obtained from the assembled transcriptomes to evaluate the extent of paralog mapping. The use of the haploid tissue during assembly increased its completeness without reducing the number of assembled transcripts. Our results suggest that current strategies that rely on available genomic resources as guidance to minimize allelic redundancy are less effective than the application of strategies that cluster redundant assembled transcripts. The strategy yielding the lowest levels of allelic redundancy among the assembled transcriptomes assessed here was the generation of SuperTranscripts with Lace followed by CD-HIT clustering. However, we still observed some levels of heterozygosity (multiple gene fragments per transcript reflecting allelic redundancy) in this assembled transcriptome on the haploid tissue, indicating that further filtering is required before using these assemblies for downstream applications. We discuss the influence of allelic redundancy when these reference transcriptomes are used to select regions for probe design of exome capture baits and for estimation of population genetic diversity.
Collapse
|
9
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Xing S, Tao C, Song Z, Liu W, Yan J, Kang L, Lin C, Sang T. Coexpression network revealing the plasticity and robustness of population transcriptome during the initial stage of domesticating energy crop Miscanthus lutarioriparius. PLANT MOLECULAR BIOLOGY 2018; 97:489-506. [PMID: 30006693 DOI: 10.1007/s11103-018-0754-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Coexpression network revealing genes with Co-variation Expression pattern (CE) and those with Top rank of Expression fold change (TE) played different roles in responding to new environment of Miscanthus lutarioriparius. Variation in gene expression level, the product of genetic and/or environmental perturbation, determines the robustness-to-plasticity spectrum of a phenotype in plants. Understanding how expression variation of plant population response to a new field is crucial to domesticate energy crops. Weighted Gene Coexpression Network Analysis (WGCNA) was used to explore the patterns of expression variation based on 72 Miscanthus lutarioriparius transcriptomes from two contrasting environments, one near the native habitat and the other in one harsh domesticating region. The 932 genes with Co-variation Expression pattern (CE) and other 932 genes with Top rank of Expression fold change (TE) were identified and the former were strongly associated with the water use efficiency (r ≥ 0.55, P ≤ 10-7). Functional enrichment of CE genes were related to three organelles, which well matched the annotation of twelve motifs identified from their conserved noncoding sequence; while TE genes were mostly related to biotic and/or abiotic stress. The expression robustness of CE genes with high genetic diversity kept relatively stable between environments while the harsh environment reduced the expression robustness of TE genes with low genetic diversity. The expression plasticity of CE genes was increased less than that of TE genes. These results suggested that expression variation of CE genes and TE genes could account for the robustness and plasticity of acclimation ability of Miscanthus, respectively. The patterns of expression variation revealed by transcriptomic network would shed new light on breeding and domestication of energy crops.
Collapse
Affiliation(s)
- Shilai Xing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Tao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihong Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Lifang Kang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cong Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Sang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|