1
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
2
|
Pinsky ML, Clark RD, Bos JT. Coral Reef Population Genomics in an Age of Global Change. Annu Rev Genet 2023; 57:87-115. [PMID: 37384733 DOI: 10.1146/annurev-genet-022123-102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA;
| | - René D Clark
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Jaelyn T Bos
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
4
|
Titus BM, Daly M. Population genomics for symbiotic anthozoans: can reduced representation approaches be used for taxa without reference genomes? Heredity (Edinb) 2022; 128:338-351. [PMID: 35418670 PMCID: PMC9076904 DOI: 10.1038/s41437-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Population genetic studies of symbiotic anthozoans have been historically challenging because their endosymbioses with dinoflagellates have impeded marker development. Genomic approaches like reduced representation sequencing alleviate marker development issues but produce anonymous loci, and without a reference genome, it is unknown which organism is contributing to the observed patterns. Alternative methods such as bait-capture sequencing targeting Ultra-Conserved Elements are now possible but costly. Thus, RADseq remains attractive, but how useful are these methods for symbiotic anthozoan taxa without a reference genome to separate anthozoan from algal sequences? We explore this through a case-study using a double-digest RADseq dataset for the sea anemone Bartholomea annulata. We assembled a holobiont dataset (3854 loci) for 101 individuals, then used a reference genome to create an aposymbiotic dataset (1402 loci). For both datasets, we investigated population structure and used coalescent simulations to estimate demography and population parameters. We demonstrate complete overlap in the spatial patterns of genetic diversity, demographic histories, and population parameter estimates for holobiont and aposymbiotic datasets. We hypothesize that the unique combination of anthozoan biology, diversity of the endosymbionts, and the manner in which assembly programs identify orthologous loci alleviates the need for reference genomes in some circumstances. We explore this hypothesis by assembling an additional 21 datasets using the assembly programs pyRAD and Stacks. We conclude that RADseq methods are more tractable for symbiotic anthozoans without reference genomes than previously realized.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
- Dauphin Island Sea Lab, Dauphin Island, AL, USA.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Mol Phylogenet Evol 2021; 163:107233. [PMID: 34139346 DOI: 10.1016/j.ympev.2021.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling.
Collapse
|
6
|
Dudaniec RY, Carey AR, Svensson EI, Hansson B, Yong CJ, Lancaster LT. Latitudinal clines in sexual selection, sexual size dimorphism and sex-specific genetic dispersal during a poleward range expansion. J Anim Ecol 2021; 91:1104-1118. [PMID: 33759189 DOI: 10.1111/1365-2656.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Range expansions can be shaped by sex differences in behaviours and other phenotypic traits affecting dispersal and reproduction. Here, we investigate sex differences in morphology, behaviour and genomic population differentiation along a climate-mediated range expansion in the common bluetail damselfly (Ischnura elegans) in northern Europe. We sampled 65 sites along a 583-km gradient spanning the I. elegans range in Sweden and quantified latitudinal gradients in site relative abundance, sex ratio and sex-specific shifts in body size and mating status (a measure of sexual selection). Using single nucleotide polymorphism (SNP) data for 426 individuals from 25 sites, we further investigated sex-specific landscape and climatic effects on neutral genetic connectivity and migration patterns. We found evidence for sex differences associated with the I. elegans range expansion, namely (a) increased male body size with latitude, but no latitudinal effect on female body size, resulting in reduced sexual dimorphism towards the range limit, (b) a steeper decline in male genetic similarity with increasing geographic distance than in females, (c) male-biased genetic migration propensity and (d) a latitudinal cline in migration distance (increasing migratory distances towards the range margin), which was stronger in males. Cooler mean annual temperatures towards the range limit were associated with increased resistance to gene flow in both sexes. Sex ratios became increasingly male biased towards the range limit, and there was evidence for a changed sexual selection regime shifting from favouring larger males in the south to favouring smaller males in the north. Our findings suggest sex-specific spatial phenotype sorting at the range limit, where larger males disperse more under higher landscape resistance associated with cooler climates. The combination of latitudinal gradients in sex-biased dispersal, increasing male body size and (reduced) sexual size dimorphism should have emergent consequences for sexual selection dynamics and the mating system at the expanding range front. Our study illustrates the importance of considering sex differences in the study of range expansions driven by ongoing climate change.
Collapse
Affiliation(s)
- Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander R Carey
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Planning, Industry and Environment, Saving our Species Program, New South Wales Government, Sydney, NSW, Australia
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Chuan Ji Yong
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lesley T Lancaster
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Hofmeister NR, Werner SJ, Lovette IJ. Environmental correlates of genetic variation in the invasive European starling in North America. Mol Ecol 2021; 30:1251-1263. [PMID: 33464634 DOI: 10.1111/mec.15806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic processes and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation genome sequencing of 17 winter-season sampling sites. Consistent with this species' high dispersal rate and rapid expansion history, we found low geographical differentiation and few FST outliers even at a continental scale. Despite starting from a founding population of ~180 individuals, North American starlings show only a moderate genetic bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against a background of negligible genome- and range-wide divergence. Given this evidence, we suggest that local adaptation in North American starlings may have evolved rapidly even in this wide-ranging and evolutionarily young system. This survey of genomic signatures of expansion in North American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these highly dispersive and invasive birds.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Prada C, Hellberg ME. Speciation-by-depth on coral reefs: Sympatric divergence with gene flow or cryptic transient isolation? J Evol Biol 2021; 34:128-137. [PMID: 33140895 PMCID: PMC7894305 DOI: 10.1111/jeb.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022]
Abstract
The distributions of many sister species in the sea overlap geographically but are partitioned along depth gradients. The genetic changes leading to depth segregation may evolve in geographic isolation as a prerequisite to coexistence or may emerge during primary divergence leading to new species. These alternatives can now be distinguished via the power endowed by the thousands of scorable loci provided by second-generation sequence data. Here, we revisit the case of two depth-segregated, genetically isolated ecotypes of the nominal Caribbean candelabrum coral Eunicea flexuosa. Previous analyses based on a handful of markers could not distinguish between models of genetic exchange after a period of isolation (consistent with secondary contact) and divergence with gene flow (consistent with primary divergence). Analyses of the history of isolation, genetic exchange and population size based on 15,640 new SNP markers derived from RNAseq data best support models where divergence began 800K BP and include epochs of divergence with gene flow, but with an intermediate period of transient isolation. Results also supported the previous conclusion that recent exchange between the ecotypes occurs asymmetrically from the Shallow lineage to the Deep. Parallel analyses of data from two other corals with depth-segregated populations (Agaricia fragilis and Pocillopora damicornis) suggest divergence leading to depth-segregated populations may begin with a period of symmetric exchange, but that an epoch of population isolation precedes more complete isolation marked by asymmetric introgression. Thus, while divergence-with-gene flow may account for much of the differentiation that separates closely related, depth-segregated species, it remains to be seen whether any critical steps in the speciation process only occur when populations are isolated.
Collapse
Affiliation(s)
- Carlos Prada
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
| | | |
Collapse
|
10
|
Stuart KC, Cardilini APA, Cassey P, Richardson MF, Sherwin WB, Rollins LA, Sherman CDH. Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Mol Ecol 2020; 30:1419-1434. [PMID: 33463838 DOI: 10.1111/mec.15601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
A detailed understanding of population genetics in invasive populations helps us to identify drivers of successful alien introductions. Here, we investigate putative signals of selection in Australian populations of invasive common starlings, Sturnus vulgaris, and seek to understand how these have been influenced by introduction history. We used reduced representation sequencing to determine population structure, and identify Single Nucleotide Polymorphisms (SNPs) that are putatively under selection. We found that since their introduction into Australia, starling populations have become genetically differentiated despite the potential for high levels of dispersal, and that starlings have responded to selective pressures imposed by a wide range of environmental conditions across their geographic range. Isolation by distance appears to have played a strong role in determining genetic substructure across the starling's Australian range. Analyses of candidate SNPs that are putatively under selection indicated that aridity, precipitation and temperature may be important factors driving adaptive variation across the starling's invasive range in Australia. However, we also noted that the historic introduction regime may leave footprints on sites flagged as being under adaptive selection, and encourage critical interpretation of selection analyses in non-native populations.
Collapse
Affiliation(s)
- Katarina C Stuart
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - William B Sherwin
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
11
|
Erickson KL, Pentico A, Quattrini AM, McFadden CS. New approaches to species delimitation and population structure of anthozoans: Two case studies of octocorals using ultraconserved elements and exons. Mol Ecol Resour 2020; 21:78-92. [PMID: 32786110 DOI: 10.1111/1755-0998.13241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
As coral populations decline worldwide in the face of ongoing environmental change, documenting their distribution, diversity and conservation status is now more imperative than ever. Accurate delimitation and identification of species is a critical first step. This task, however, is not trivial as morphological variation and slowly evolving molecular markers confound species identification. New approaches to species delimitation in corals are needed to overcome these challenges. Here, we test whether target enrichment of ultraconserved elements (UCEs) and exons can be used for delimiting species boundaries and population structure within species of corals by focusing on two octocoral genera, Alcyonium and Sinularia, as exemplary case studies. We designed an updated bait set (29,181 baits) to target-capture 3,023 UCE and exon loci, recovering a mean of 1,910 ± 168 SD per sample with a mean length of 1,055 ± 208 bp. Similar numbers of loci were recovered from Sinularia (1,946 ± 227 SD) and Alcyonium (1,863 ± 177 SD). Species-level phylogenies were highly supported for both genera. Clustering methods based on filtered single nucleotide polymorphisms delimited species and populations that are congruent with previous allozyme, DNA barcoding, reproductive and ecological data for Alcyonium, and offered further evidence of hybridization among species. For Sinularia, results were congruent with those obtained from a previous study using restriction site associated DNA sequencing. Both case studies demonstrate the utility of target-enrichment of UCEs and exons to address a wide range of evolutionary and taxonomic questions across deep to shallow timescales in corals.
Collapse
Affiliation(s)
| | - Alicia Pentico
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, Claremont, CA, USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | |
Collapse
|
12
|
Kennedy JP, Preziosi RF, Rowntree JK, Feller IC. Is the central-marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Mol Ecol 2020; 29:704-719. [PMID: 31990426 PMCID: PMC7065085 DOI: 10.1111/mec.15365] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
The central-marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter-population genetic differentiation compared to range cores. CMH predictions are based on long-held "abundant-centre" assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying "abundant-centre" assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to "abundant-centre" assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.
Collapse
Affiliation(s)
- John Paul Kennedy
- Smithsonian Marine StationSmithsonian InstitutionFort PierceFLUSA
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Richard F. Preziosi
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Jennifer K. Rowntree
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Ilka C. Feller
- Smithsonian Environmental Research CenterSmithsonian InstitutionEdgewaterMDUSA
| |
Collapse
|
13
|
Selechnik D, Richardson MF, Shine R, DeVore JL, Ducatez S, Rollins LA. Increased Adaptive Variation Despite Reduced Overall Genetic Diversity in a Rapidly Adapting Invader. Front Genet 2019; 10:1221. [PMID: 31850072 PMCID: PMC6901984 DOI: 10.3389/fgene.2019.01221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
Invasive species often evolve rapidly following introduction despite genetic bottlenecks that may result from small numbers of founders; however, some invasions may not fit this “genetic paradox”. The invasive cane toad (Rhinella marina) displays high phenotypic variation across its introduced Australian range. Here, we used three genome-wide datasets to characterize their population structure and genetic diversity. We found that toads form three genetic clusters: 1) native range toads, 2) toads from the source population in Hawaii and long-established areas near introduction sites in Australia, and 3) toads from more recently established northern Australian sites. Although we find an overall reduction in genetic diversity following introduction, we do not see this reduction in loci putatively under selection, suggesting that genetic diversity may have been maintained at ecologically relevant traits, or that mutation rates were high enough to maintain adaptive potential. Nonetheless, toads encounter novel environmental challenges in Australia, and the transition between genetic clusters occurs at a point along the invasion transect where temperature rises and rainfall decreases. We identify environmentally associated loci known to be involved in resistance to heat and dehydration. This study highlights that natural selection occurs rapidly and plays a vital role in shaping the structure of invasive populations.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia.,Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark F Richardson
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Simon Ducatez
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Zhang YM, Vitone TR, Storer CG, Payton AC, Dunn RR, Hulcr J, McDaniel SF, Lucky A. From Pavement to Population Genomics: Characterizing a Long-Established Non-native Ant in North America Through Citizen Science and ddRADseq. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Nakabayashi A, Yamakita T, Nakamura T, Aizawa H, Kitano YF, Iguchi A, Yamano H, Nagai S, Agostini S, Teshima KM, Yasuda N. The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci Rep 2019; 9:1892. [PMID: 30760801 PMCID: PMC6374466 DOI: 10.1038/s41598-018-38333-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022] Open
Abstract
As corals in tropical regions are threatened by increasing water temperatures, poleward range expansion of reef-building corals has been observed, and temperate regions are expected to serve as refugia in the face of climate change. To elucidate the important indicators of the sustainability of coral populations, we examined the genetic diversity and connectivity of the common reef-building coral Acropora hyacinthus along the Kuroshio Current, including recently expanded (<50 years) populations. Among the three cryptic lineages found, only one was distributed in temperate regions, which could indicate the presence of Kuroshio-associated larval dispersal barriers between temperate and subtropical regions, as shown by oceanographic simulations as well as differences in environmental factors. The level of genetic diversity gradually decreased towards the edge of the species distribution. This study provides an example of the reduced genetic diversity in recently expanded marginal populations, thus indicating the possible vulnerability of these populations to environmental changes. This finding underpins the importance of assessing the genetic diversity of newly colonized populations associated with climate change for conservation purposes. In addition, this study highlights the importance of pre-existing temperate regions as coral refugia, which has been rather underappreciated in local coastal management.
Collapse
Affiliation(s)
- Aki Nakabayashi
- Department of Marine Biology and Environmental Sciences, University of Miyazaki, Faculty of Agriculture, Gakuen- kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Takehisa Yamakita
- R&D Center for Submarine Resource, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka-city, Kanagawa, 237-0061, Japan
| | - Takashi Nakamura
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, O-okayama 2-12-1-W8-5, Meguro-ku, Tokyo, 152-8552, Japan
| | - Hiroaki Aizawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, O-okayama 2-12-1-W8-5, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuko F Kitano
- Organization for Promotion of Tenure Track, University of Miyazaki, Faculty of Agriculture, Gakuen- kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.,Iriomote station, Tropical Biosphere Research Center, University of Ryukyus, 870 Uehara, Taketomi, Okinawa, 907-1541, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-shi, Ibaraki, 305-8506, Japan
| | - Akira Iguchi
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa, 905-2192, Japan.,Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Hiroya Yamano
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-shi, Ibaraki, 305-8506, Japan
| | - Satoshi Nagai
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka, 415-0025, Japan
| | - Kosuke M Teshima
- Department of Biology, Faculty of Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nina Yasuda
- Organization for Promotion of Tenure Track, University of Miyazaki, Faculty of Agriculture, Gakuen- kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.
| |
Collapse
|