1
|
Xiao M, Hao G, Guo X, Feng L, Lin H, Yang W, Chen Y, Zhao K, Xiang L, Jiang X, Mei D, Hu Q. A high-quality chromosome-level Eutrema salsugineum genome, an extremophile plant model. BMC Genomics 2023; 24:174. [PMID: 37020189 PMCID: PMC10077641 DOI: 10.1186/s12864-023-09256-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Eutrema salsugineum (2n = 14), a halophyte in the family Brassicaceae, is an attractive model to study abiotic stress tolerance in plants. Two versions of E. salsugineum genomes that previously reported were based on relatively short reads; thus, the repetitive regions were difficult to characterize. RESULTS We report the sequencing and assembly of the E. salsugineum (Shandong accession) genome using long-read sequencing and chromosome conformation capture data. We generated Oxford Nanopore long reads at high depth (> 60X) of genome coverage with additional short reads for error correction. The new assembly has a total size of 295.5 Mb with 52.8% repetitive sequences, and the karyotype of E. salsugineum is consistent with the ancestral translocation Proto-Calepineae Karyotype structure in both order and orientation. Compared with previous assemblies, this assembly has higher contiguity, especially in the centromere region. Based on this new assembly, we predicted 25,399 protein-coding genes and identified the positively selected genes associated with salt and drought stress responses. CONCLUSION The new genome assembly will provide a valuable resource for future genomic studies and facilitate comparative genomic analysis with other plants.
Collapse
Grants
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
Collapse
Affiliation(s)
- Meng Xiao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Guoqian Hao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644007, Sichuan, China
| | - Xinyi Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjie Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yanyu Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Kexin Zhao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xinyao Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Moreira LR, Klicka J, Smith BT. Demography and linked selection interact to shape the genomic landscape of codistributed woodpeckers during the Ice Age. Mol Ecol 2023; 32:1739-1759. [PMID: 36617622 DOI: 10.1111/mec.16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape.
Collapse
Affiliation(s)
- Lucas R Moreira
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA.,Department of Ornithology, American Museum of Natural History, New York City, New York, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, Washington, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, New York, USA
| |
Collapse
|
3
|
Sun Y, Oh DH, Duan L, Ramachandran P, Ramirez A, Bartlett A, Tran KN, Wang G, Dassanayake M, Dinneny JR. Divergence in the ABA gene regulatory network underlies differential growth control. NATURE PLANTS 2022; 8:549-560. [PMID: 35501452 DOI: 10.1038/s41477-022-01139-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The phytohormone abscisic acid (ABA) is a central regulator of acclimation to environmental stress; however, its contribution to differences in stress tolerance between species is unclear. To establish a comparative framework for understanding how stress hormone signalling pathways diverge across species, we studied the growth response of four Brassicaceae species to ABA treatment and generated transcriptomic and DNA affinity purification and sequencing datasets to construct a cross-species gene regulatory network (GRN) for ABA. Comparison of genes bound directly by ABA-responsive element binding factors suggests that cis-factors are most important for determining the target loci represented in the ABA GRN of a particular species. Using this GRN, we reveal how rewiring of growth hormone subnetworks contributes to stark differences in the response to ABA in the extremophyte Schrenkiella parvula. Our study provides a model for understanding how divergence in gene regulation can lead to species-specific physiological outcomes in response to hormonal cues.
Collapse
Affiliation(s)
- Ying Sun
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Lina Duan
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Andrea Ramirez
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Wang X, Rao H, Ma J, Chen X, Li G, Zhao G. Genomic Variation Landscape of the Model Salt Cress Eutrema salsugineum. FRONTIERS IN PLANT SCIENCE 2021; 12:700161. [PMID: 34484264 PMCID: PMC8416042 DOI: 10.3389/fpls.2021.700161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 05/13/2023]
Abstract
Eutrema salsugineum has long been used as the model for examining salt and other abiotic stress in plants. In addition to the forward genetics approaches widely used in the lab, natural variations undoubtedly will provide a rich genetic resource for studying molecular mechanisms underlying the stress tolerance and local adaptation of this species. We used 90 resequencing whole genomes of natural populations of this species across its Asian and North American distributions to detect the selection signals for genes involved in salt and other stresses at the species-range level and local distribution. We detected selection signals for genes involved in salt and other abiotic tolerance at the species level. In addition, several cold-induced and defense genes showed selection signals due to local adaptation in North America-NE Russia or northern China, respectively. These variations and findings provide valuable resources for further deciphering genetic mechanisms underlying the stress tolerance and local adaptations of this model species.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Rao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Special Economic Zone for Science and Technology Synergy, China State-Level Xixian New Area, Xi'an, China
| | - Jianxiang Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaodan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Guanglin Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
5
|
de Pedro M, Riba M, González-Martínez SC, Seoane P, Bautista R, Claros MG, Mayol M. Demography, genetic diversity and expansion load in the colonizing species Leontodon longirostris (Asteraceae) throughout its native range. Mol Ecol 2021; 30:1190-1205. [PMID: 33452714 DOI: 10.1111/mec.15802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022]
Abstract
Unravelling the evolutionary processes underlying range expansions is fundamental to understand the distribution of organisms, as well as to predict their future responses to environmental change. Predictions for range expansions include a loss of genetic diversity and an accumulation of deleterious alleles along the expansion axis, which can decrease fitness at the range-front (expansion load). In plants, empirical studies supporting expansion load are scarce, and its effects remain to be tested outside a few model species. Leontodon longirostris is a colonizing Asteraceae with a widespread distribution in the Western Mediterranean, providing a particularly interesting system to gain insight into the factors that can enhance or mitigate expansion load. In this study, we produced a first genome draft for the species, covering 418 Mbp (~53% of the genome). Although incomplete, this draft was suitable to design a targeted sequencing of ~1.5 Mbp in 238 L. longirostris plants from 21 populations distributed along putative colonization routes in the Iberian Peninsula. Inferred demographic history supports a range expansion from southern Iberia around 40,000 years ago, reaching northern Iberia around 25,000 years ago. The expansion was accompanied by a loss of genetic diversity and a significant increase in the proportion of putatively deleterious mutations. However, levels of expansion load in L. longirostris were smaller than those found in other plant species, which can be explained, at least partially, by its high dispersal ability, the self-incompatible mating system, and the fact that the expansion occurred along a strong environmental cline.
Collapse
Affiliation(s)
| | - Miquel Riba
- CREAF, Cerdanyola del Vallès, Spain.,Univ. Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, and Institute for Mediterranean and Subtropical Horticulture (IHSM-CSIC-UMA), Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| | - Rocío Bautista
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain
| | - Manuel Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, and Institute for Mediterranean and Subtropical Horticulture (IHSM-CSIC-UMA), Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain.,Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | | |
Collapse
|
6
|
Simopoulos CMA, MacLeod MJR, Irani S, Sung WWL, Champigny MJ, Summers PS, Golding GB, Weretilnyk EA. Coding and long non-coding RNAs provide evidence of distinct transcriptional reprogramming for two ecotypes of the extremophile plant Eutrema salsugineum undergoing water deficit stress. BMC Genomics 2020; 21:396. [PMID: 32513102 PMCID: PMC7278158 DOI: 10.1186/s12864-020-06793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background The severity and frequency of drought has increased around the globe, creating challenges in ensuring food security for a growing world population. As a consequence, improving water use efficiency by crops has become an important objective for crop improvement. Some wild crop relatives have adapted to extreme osmotic stresses and can provide valuable insights into traits and genetic signatures that can guide efforts to improve crop tolerance to water deficits. Eutrema salsugineum, a close relative of many cruciferous crops, is a halophytic plant and extremophyte model for abiotic stress research. Results Using comparative transcriptomics, we show that two E. salsugineum ecotypes display significantly different transcriptional responses towards a two-stage drought treatment. Even before visibly wilting, water deficit led to the differential expression of almost 1,100 genes for an ecotype from the semi-arid, sub-arctic Yukon, Canada, but only 63 genes for an ecotype from the semi-tropical, monsoonal, Shandong, China. After recovery and a second drought treatment, about 5,000 differentially expressed genes were detected in Shandong plants versus 1,900 genes in Yukon plants. Only 13 genes displayed similar drought-responsive patterns for both ecotypes. We detected 1,007 long non-protein coding RNAs (lncRNAs), 8% were only expressed in stress-treated plants, a surprising outcome given the documented association between lncRNA expression and stress. Co-expression network analysis of the transcriptomes identified eight gene clusters where at least half of the genes in each cluster were differentially expressed. While many gene clusters were correlated to drought treatments, only a single cluster significantly correlated to drought exposure in both ecotypes. Conclusion Extensive, ecotype-specific transcriptional reprogramming with drought was unexpected given that both ecotypes are adapted to saline habitats providing persistent exposure to osmotic stress. This ecotype-specific response would have escaped notice had we used a single exposure to water deficit. Finally, the apparent capacity to improve tolerance and growth after a drought episode represents an important adaptive trait for a plant that thrives under semi-arid Yukon conditions, and may be similarly advantageous for crop species experiencing stresses attributed to climate change.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada.,Current address: Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada
| | - Mitchell J R MacLeod
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Solmaz Irani
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Wilson W L Sung
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Marc J Champigny
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Peter S Summers
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | | |
Collapse
|
7
|
Muyle A, Gaut BS. Loss of Gene Body Methylation in Eutrema salsugineum Is Associated with Reduced Gene Expression. Mol Biol Evol 2019; 36:155-158. [PMID: 30398664 PMCID: PMC6340462 DOI: 10.1093/molbev/msy204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene body methylation (gbM) is typically characterized by DNA methylation in the CG context within coding regions and is associated with constitutive genes that have moderate to high expression levels. A recent study discovered the loss of gbM in two plant species (Eutrema salsugineum and Conringia planisiliqua), illustrating that gbM is not necessary for survival and reproduction. The same paper stated there was no detectable effect of gbM loss on gene expression (GE). Here, we reanalyzed the GE data and accounted for experimental variability in expression level estimates. We show that the loss of gbM in E. salsugineum is associated with a small but highly significant decrease in GE relative to the closely related species Arabidospis thaliana. Our results are consistent with various evolutionary analyses that suggest gbM has a function, perhaps as a homeostatic effect on GE.
Collapse
Affiliation(s)
- Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| |
Collapse
|