1
|
Euclide PT, Larson WA, Shi Y, Gruenthal K, Christensen KA, Seeb J, Seeb L. Conserved islands of divergence associated with adaptive variation in sockeye salmon are maintained by multiple mechanisms. Mol Ecol 2024; 33:e17126. [PMID: 37695544 PMCID: PMC11628665 DOI: 10.1111/mec.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Local adaptation is facilitated by loci clustered in relatively few regions of the genome, termed genomic islands of divergence. The mechanisms that create and maintain these islands and how they contribute to adaptive divergence is an active research topic. Here, we use sockeye salmon as a model to investigate both the mechanisms responsible for creating islands of divergence and the patterns of differentiation at these islands. Previous research suggested that multiple islands contributed to adaptive radiation of sockeye salmon. However, the low-density genomic methods used by these studies made it difficult to fully elucidate the mechanisms responsible for islands and connect genotypes to adaptive variation. We used whole genome resequencing to genotype millions of loci to investigate patterns of genetic variation at islands and the mechanisms that potentially created them. We discovered 64 islands, including 16 clustered in four genomic regions shared between two isolated populations. Characterisation of these four regions suggested that three were likely created by structural variation, while one was created by processes not involving structural variation. All four regions were small (< 600 kb), suggesting low recombination regions do not have to span megabases to be important for adaptive divergence. Differentiation at islands was not consistently associated with established population attributes. In sum, the landscape of adaptive divergence and the mechanisms that create it are complex; this complexity likely helps to facilitate fine-scale local adaptation unique to each population.
Collapse
Affiliation(s)
- Peter T. Euclide
- Department of Forestry and Natural ResourcesIllinois‐Indiana Sea GrantPurdue UniversityWest LafayetteIndianaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Yue Shi
- College of Fisheries and Ocean Sciences, University of Alaska FairbanksJuneauAlaskaUSA
| | - Kristen Gruenthal
- Alaska Department of Fish and GameJuneauAlaskaUSA
- Office of Applied Science, Wisconsin Department of Natural Resources, Wisconsin Cooperative Fishery Research UnitCollege of Natural Resources, University of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | | | - Jim Seeb
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Lisa Seeb
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Fenton S, Jacobs A, Bean CW, Adams CE, Elmer KR. Genomic underpinnings of head and body shape in Arctic charr ecomorph pairs. Mol Ecol 2024; 33:e17305. [PMID: 38421099 DOI: 10.1111/mec.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.
Collapse
Affiliation(s)
- Sam Fenton
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Arne Jacobs
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Colin W Bean
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- NatureScot, Clydebank, UK
| | - Colin E Adams
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
May SA, Shedd KR, Rand PS, Westley PAH. Tidal gradients, fine-scale homing and a potential cryptic ecotype of wild spawning pink salmon (Oncorhynchus gorbuscha). Mol Ecol 2023; 32:5838-5848. [PMID: 37830261 DOI: 10.1111/mec.17154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
The homing behaviour of salmon is a remarkable natural phenomenon, critical for shaping the ecology and evolution of populations yet the spatial scale at which it occurs is poorly understood. This study investigated the spatial scale and mechanisms driving homing as depicted by spawning site-choice behaviour in pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Molecular pedigree analyses of over 30,000 adult spawners in four streams revealed that pink salmon exhibit fine-scale site fidelity within a stream, returning to within <100 m of their parents. Homing behaviours were driven in part by a salinity gradient between intertidal and freshwater environments, with individuals incubated in freshwater environments more than twice as likely to spawn upstream of tidal influence than those incubated in the intertidal. Our findings challenge the traditional view that pink salmon populations are genetically and phenotypically homogenous due to their short freshwater residency as juveniles and high rates of dispersal as returning adults (i.e. straying). This study has important implications for rates of inbreeding, local adaptation and gene flow within populations, and is particularly relevant to the management of salmon hatcheries, given the high incidence of hatchery-origin pink salmon, reared in freshwater hatchery environments, that stray into wild populations of Prince William Sound.
Collapse
Affiliation(s)
- Samuel A May
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kyle R Shedd
- Alaska Department of Fish & Game, Anchorage, Alaska, USA
| | - Peter S Rand
- Prince William Sound Science Center (PWSSC), Cordova, Alaska, USA
| | - Peter A H Westley
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
4
|
Ratcliffe FC, Garcia de Leaniz C, Consuegra S. MHC class I-α population differentiation in a commercial fish, the European sea bass (Dicentrarchus labrax). Anim Genet 2022; 53:340-351. [PMID: 35274334 PMCID: PMC9314080 DOI: 10.1111/age.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Identifying population structuring in highly fecund marine species with high dispersal rates is challenging, but critical for conservation and stock delimitation for fisheries management. European sea bass (Dicentrarchus labrax) is a commercial species of fisheries and aquaculture relevance whose stocks are declining in the North Atlantic, despite management measures to protect them and identifying their fine population structure is needed for managing their exploitation. As for other marine fishes, neutral genetic markers indicate that eastern Atlantic sea bass form a panmictic population and is currently managed as arbitrarily divided stocks. The genes of the major histocompatibility complex (MHC) are key components of the adaptive immune system and ideal candidates to assess fine structuring arising from local selective pressures. We used Illumina sequencing to characterise allelic composition and signatures of selection at the MHC class I-α region of six D. labrax populations across the Atlantic range. We found high allelic diversity driven by positive selection, corresponding to moderate supertype diversity, with 131 alleles clustering into four to eight supertypes, depending on the Bayesian information criterion threshold applied, and a mean number of 13 alleles per individual. Alleles could not be assigned to particular loci, but private alleles allowed us to detect regional genetic structuring not found previously using neutral markers. Our results suggest that MHC markers can be used to detect cryptic population structuring in marine species where neutral markers fail to identify differentiation. This is particularly critical for fisheries management, and of potential use for selective breeding or identifying escapes from sea farms.
Collapse
Affiliation(s)
- Frances C Ratcliffe
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
5
|
Salisbury SJ, Ruzzante DE. Genetic Causes and Consequences of Sympatric Morph Divergence in Salmonidae: A Search for Mechanisms. Annu Rev Anim Biosci 2021; 10:81-106. [PMID: 34758272 DOI: 10.1146/annurev-animal-051021-080709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeatedly and recently evolved sympatric morphs exhibiting consistent phenotypic differences provide natural experimental replicates of speciation. Because such morphs are observed frequently in Salmonidae, this clade provides a rare opportunity to uncover the genomic mechanisms underpinning speciation. Such insight is also critical for conserving salmonid diversity, the loss of which could have significant ecological and economic consequences. Our review suggests that genetic differentiation among sympatric morphs is largely nonparallel apart from a few key genes that may be critical for consistently driving morph differentiation. We discuss alternative levels of parallelism likely underlying consistent morph differentiation and identify several factors that may temper this incipient speciation between sympatric morphs, including glacial history and contemporary selective pressures. Our synthesis demonstrates that salmonids are useful for studying speciation and poses additional research questions to be answered by future study of this family. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S J Salisbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada; ,
| | - D E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada; ,
| |
Collapse
|
6
|
Chafin TK, Regmi B, Douglas MR, Edds DR, Wangchuk K, Dorji S, Norbu P, Norbu S, Changlu C, Khanal GP, Tshering S, Douglas ME. Parallel introgression, not recurrent emergence, explains apparent elevational ecotypes of polyploid Himalayan snowtrout. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210727. [PMID: 34729207 PMCID: PMC8548808 DOI: 10.1098/rsos.210727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The recurrence of similar evolutionary patterns within different habitats often reflects parallel selective pressures acting upon either standing or independently occurring genetic variation to produce a convergence of phenotypes. This interpretation (i.e. parallel divergences within adjacent streams) has been hypothesized for drainage-specific morphological 'ecotypes' observed in polyploid snowtrout (Cyprinidae: Schizothorax). However, parallel patterns of differential introgression during secondary contact are a viable alternative hypothesis. Here, we used ddRADseq (N = 35 319 de novo and N = 10 884 transcriptome-aligned SNPs), as derived from Nepali/Bhutanese samples (N = 48 each), to test these competing hypotheses. We first employed genome-wide allelic depths to derive appropriate ploidy models, then a Bayesian approach to yield genotypes statistically consistent under the inferred expectations. Elevational 'ecotypes' were consistent in geometric morphometric space, but with phylogenetic relationships at the drainage level, sustaining a hypothesis of independent emergence. However, partitioned analyses of phylogeny and admixture identified subsets of loci under selection that retained genealogical concordance with morphology, suggesting instead that apparent patterns of morphological/phylogenetic discordance are driven by widespread genomic homogenization. Here, admixture occurring in secondary contact effectively 'masks' previous isolation. Our results underscore two salient factors: (i) morphological adaptations are retained despite hybridization and (ii) the degree of admixture varies across tributaries, presumably concomitant with underlying environmental or anthropogenic factors.
Collapse
Affiliation(s)
- Tyler K. Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309, USA
| | - Binod Regmi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlis R. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - David R. Edds
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801, USA
| | - Karma Wangchuk
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Sonam Dorji
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Pema Norbu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Sangay Norbu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Changlu Changlu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Gopal Prasad Khanal
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Singye Tshering
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Michael E. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Zueva KJ, Lumme J, Veselov AE, Primmer CR, Pritchard VL. Population genomics reveals repeated signals of adaptive divergence in the Atlantic salmon of north‐eastern Europe. J Evol Biol 2020; 34:866-878. [DOI: 10.1111/jeb.13732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Jaakko Lumme
- Department of Biology University of Oulu Oulu Finland
| | | | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Victoria L. Pritchard
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Rivers and Lochs Institute Inverness College University of Highlands and Islands Inverness UK
| |
Collapse
|
8
|
The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One 2020; 15:e0240935. [PMID: 33119641 PMCID: PMC7595290 DOI: 10.1371/journal.pone.0240935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sockeye salmon (Oncorhynchus nerka) is a commercially and culturally important species to the people that live along the northern Pacific Ocean coast. There are two main sockeye salmon ecotypes—the ocean-going (anadromous) ecotype and the fresh-water ecotype known as kokanee. The goal of this study was to better understand the population structure of sockeye salmon and identify possible genomic differences among populations and between the two ecotypes. In pursuit of this goal, we generated the first reference sockeye salmon genome assembly and an RNA-seq transcriptome data set to better annotate features of the assembly. Resequenced whole-genomes of 140 sockeye salmon and kokanee were analyzed to understand population structure and identify genomic differences between ecotypes. Three distinct geographic and genetic groups were identified from analyses of the resequencing data. Nucleotide variants in an immunoglobulin heavy chain variable gene cluster on chromosome 26 were found to differentiate the northwestern group from the southern and upper Columbia River groups. Several candidate genes were found to be associated with the kokanee ecotype. Many of these genes were related to ammonia tolerance or vision. Finally, the sex chromosomes of this species were better characterized, and an alternative sex-determination mechanism was identified in a subset of upper Columbia River kokanee.
Collapse
|
9
|
Salisbury SJ, McCracken GR, Perry R, Keefe D, Layton KK, Kess T, Nugent CM, Leong JS, Bradbury IR, Koop BF, Ferguson MM, Ruzzante DE. Limited genetic parallelism underlies recent, repeated incipient speciation in geographically proximate populations of an Arctic fish (
Salvelinus alpinus
). Mol Ecol 2020; 29:4280-4294. [DOI: 10.1111/mec.15634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Robert Perry
- Department of Environment Fish and Wildlife Division Government of Yukon Whitehorse YT Canada
| | - Donald Keefe
- Department of Environment and Conservation Wildlife Division Government of Newfoundland and Labrador Corner Brook NL Canada
| | - Kara K.S. Layton
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| | - Tony Kess
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
| | - Cameron M. Nugent
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | - Jong S. Leong
- Department of Biology University of Victoria Victoria BC Canada
| | - Ian R. Bradbury
- Department of Biology Dalhousie University Halifax NS Canada
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| | - Ben F. Koop
- Department of Biology University of Victoria Victoria BC Canada
- Centre for Biomedical Research University of Victoria Victoria BC Canada
| | - Moira M. Ferguson
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | | |
Collapse
|
10
|
Maselko J, Andrews KR, Hohenlohe PA. Long-lived marine species may be resilient to environmental variability through a temporal portfolio effect. Ecol Evol 2020; 10:6435-6448. [PMID: 32724524 PMCID: PMC7381576 DOI: 10.1002/ece3.6378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 12/02/2022] Open
Abstract
Maintenance of genetic variation may provide resilience of populations to natural environmental variability. We used Pacific ocean perch (POP; Sebastes alutus) to test for the maintenance of adaptive variation across overlapping generations. POP are a long-lived species characterized by widespread larval dispersal in their first year and a longevity of over 100 years. In order to understand how early marine dispersal affects POP survival and population structure, we used restriction site-associated DNA sequencing (RADseq) to obtain 11,146 single-nucleotide polymorphisms (SNPs) from 401 young-of-the-year (YOY) POP collected during surveys conducted in 2014 (19 stations) and 2015 (4 stations) in the eastern Gulf of Alaska. Population clustering analysis showed that the POP samples represented four distinct ancestral populations mixed throughout the sampling area. Based on prior work on larval dispersal of POP, these larvae are most likely from distinct parturition locations that are mixing during their pelagic dispersal life stage. Latent factor mixed models revealed that POP larvae face significant selection during their first year at sea, which is specific to the year of their birth. Thus each adult cohort's genetic composition is heavily influenced by the environmental conditions experienced during their first year at sea. Long-lived species relying on broadcast spawning strategies may therefore be uniquely resilient to environmental variability by maintaining a portfolio of cohort-specific adaptive genotypes, and age truncation due to overfishing of older cohorts may have detrimental effect on the population viability.
Collapse
Affiliation(s)
- Jacek Maselko
- College of Science, Bioinformatics and Computational Biology ProgramUniversity of IdahoMoscowIDUSA
- Alaska Fisheries Science CenterNOAANational Marine Fisheries ServiceJuneauAKUSA
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIDUSA
| | - Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIDUSA
- Department of Biological SciencesInstitute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIDUSA
| |
Collapse
|
11
|
Schneider K, Adams CE, Elmer KR. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids. BMC Genomics 2019; 20:1010. [PMID: 31870285 PMCID: PMC6929470 DOI: 10.1186/s12864-019-6361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. Results All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. Conclusions Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|