1
|
Justen HC, Easton WE, Delmore KE. Mapping seasonal migration in a songbird hybrid zone -- heritability, genetic correlations, and genomic patterns linked to speciation. Proc Natl Acad Sci U S A 2024; 121:e2313442121. [PMID: 38648483 PMCID: PMC11067064 DOI: 10.1073/pnas.2313442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Seasonal migration is a widespread behavior relevant for adaptation and speciation, yet knowledge of its genetic basis is limited. We leveraged advances in tracking and sequencing technologies to bridge this gap in a well-characterized hybrid zone between songbirds that differ in migratory behavior. Migration requires the coordinated action of many traits, including orientation, timing, and wing morphology. We used genetic mapping to show these traits are highly heritable and genetically correlated, explaining how migration has evolved so rapidly in the past and suggesting future responses to climate change may be possible. Many of these traits mapped to the same genomic regions and small structural variants indicating the same, or tightly linked, genes underlie them. Analyses integrating transcriptomic data indicate cholinergic receptors could control multiple traits. Furthermore, analyses integrating genomic differentiation further suggested genes underlying migratory traits help maintain reproductive isolation in this hybrid zone.
Collapse
Affiliation(s)
- Hannah C. Justen
- Biology Department, Texas Agricultural and Mechanical University, TAMUCollege Station, TX3528
| | - Wendy E. Easton
- Environment and Climate Change Canada, Canadian Wildlife Service-Pacific Region, Delta, BCV4K 3N2, Canada
| | - Kira E. Delmore
- Biology Department, Texas Agricultural and Mechanical University, TAMUCollege Station, TX3528
| |
Collapse
|
2
|
Ferrão MAG, da Fonseca AFA, Volpi PS, de Souza LC, Comério M, Filho ACV, Riva-Souza EM, Munoz PR, Ferrão RG, Ferrão LFV. Genomic-assisted breeding for climate-smart coffee. THE PLANT GENOME 2024; 17:e20321. [PMID: 36946358 DOI: 10.1002/tpg2.20321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Coffee is a universal beverage that drives a multi-industry market on a global basis. Today, the sustainability of coffee production is threatened by accelerated climate changes. In this work, we propose the implementation of genomic-assisted breeding for climate-smart coffee in Coffea canephora. This species is adapted to higher temperatures and is more resilient to biotic and abiotic stresses. After evaluating two populations, over multiple harvests, and under severe drought weather condition, we dissected the genetic architecture of yield, disease resistance, and quality-related traits. By integrating genome-wide association studies and diallel analyses, our contribution is four-fold: (i) we identified a set of molecular markers with major effects associated with disease resistance and post-harvest traits, while yield and plant architecture presented a polygenic background; (ii) we demonstrated the relevance of nonadditive gene actions and projected hybrid vigor when genotypes from different geographically botanical groups are crossed; (iii) we computed medium-to-large heritability values for most of the traits, representing potential for fast genetic progress; and (iv) we provided a first step toward implementing molecular breeding to accelerate improvements in C. canephora. Altogether, this work is a blueprint for how quantitative genetics and genomics can assist coffee breeding and support the supply chain in the face of the current global changes.
Collapse
Affiliation(s)
- Maria Amélia G Ferrão
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Café, Brasília, Brazil
| | - Aymbire F A da Fonseca
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Café, Brasília, Brazil
| | - Paulo S Volpi
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Lucimara C de Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Marcone Comério
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Abraão C Verdin Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Elaine M Riva-Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Patricio R Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Romário G Ferrão
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Multivix Group, ES, Brazil
| | - Luís Felipe V Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Michielini JP, Yi X, Brown LM, Gao SM, Orians C, Crone EE. Novel host plant use by a specialist insect depends on geographic variation in both the host and herbivore species. Oecologia 2024; 204:95-105. [PMID: 38123786 PMCID: PMC10830605 DOI: 10.1007/s00442-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore, Euphydryas phaeton. In parts of its range, E. phaeton uses only a native host, Chelone glabra, while in others, it also uses an introduced host, Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.
Collapse
Affiliation(s)
- James P Michielini
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Xianfeng Yi
- College of Life Science, Qufu Normal University, Qufu, China
| | - Leone M Brown
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Biology Department, James Madison University, Harrisonburg, VA, 22807, USA
| | - Shan Ming Gao
- Biology Department, Pomona College, Claremont, CA, 91711, USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Additive genetic effects in interacting species jointly determine the outcome of caterpillar herbivory. Proc Natl Acad Sci U S A 2022; 119:e2206052119. [PMID: 36037349 PMCID: PMC9456756 DOI: 10.1073/pnas.2206052119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant-insect interactions are common and important in basic and applied biology. Trait and genetic variation can affect the outcome and evolution of these interactions, but the relative contributions of plant and insect genetic variation and how these interact remain unclear and are rarely subject to assessment in the same experimental context. Here, we address this knowledge gap using a recent host-range expansion onto alfalfa by the Melissa blue butterfly. Common garden rearing experiments and genomic data show that caterpillar performance depends on plant and insect genetic variation, with insect genetics contributing to performance earlier in development and plant genetics later. Our models of performance based on caterpillar genetics retained predictive power when applied to a second common garden. Much of the plant genetic effect could be explained by heritable variation in plant phytochemicals, especially saponins, peptides, and phosphatidyl cholines, providing a possible mechanistic understanding of variation in the species interaction. We find evidence of polygenic, mostly additive effects within and between species, with consistent effects of plant genotype on growth and development across multiple butterfly species. Our results inform theories of plant-insect coevolution and the evolution of diet breadth in herbivorous insects and other host-specific parasites.
Collapse
|
5
|
Messina FJ, Lish AM, Gompert Z. Disparate genetic variants associated with distinct components of cowpea resistance to the seed beetle Callosobruchus maculatus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2749-2766. [PMID: 34117909 DOI: 10.1007/s00122-021-03856-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Polygenic genome-wide association mapping identified two regions of the cowpea genome associated with different components of resistance to its major post-harvest pest, the seed beetle Callosobruchus maculatus. Cowpea (Vigna unguiculata) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus, is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.
Collapse
Affiliation(s)
- Frank J Messina
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Alexandra M Lish
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
6
|
Herrig DK, Vertacnik KL, Kohrs AR, Linnen CR. Support for the adaptive decoupling hypothesis from whole-transcriptome profiles of a hypermetamorphic and sexually dimorphic insect, Neodiprion lecontei. Mol Ecol 2021; 30:4551-4566. [PMID: 34174126 DOI: 10.1111/mec.16041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Though seemingly bizarre, the dramatic morphological and ecological transformation that occurs when immature life stages metamorphose into reproductive adults is one of the most successful developmental strategies on the planet. The adaptive decoupling hypothesis (ADH) proposes that metamorphosis is an adaptation for breaking developmental links between traits expressed in different life stages, thereby facilitating their independent evolution when exposed to opposing selection pressures. Here, we draw inspiration from the ADH to develop a conceptual framework for understanding changes in gene expression across ontogeny. We hypothesized that patterns of stage-biased and sex-biased gene expression are the product of both decoupling mechanisms and selection history. To test this hypothesis, we characterized transcriptome-wide patterns of gene-expression traits for three ecologically distinct larval stages (all male) and adult males and females of a hypermetamorphic insect (Neodiprion lecontei). We found that stage-biased gene expression was most pronounced between larval and adult males, which is consistent with the ADH. However, even in the absence of a metamorphic transition, considerable stage-biased expression was observed among morphologically and behaviourally distinct larval stages. Stage-biased expression was also observed across ecologically relevant Gene Ontology categories and genes, highlighting the role of ecology in shaping patterns of gene expression. We also found that the magnitude and prevalence of stage-biased expression far exceeded adult sex-biased expression. Overall, our results highlight how the ADH can shed light on transcriptome-wide patterns of gene expression in organisms with complex life cycles. For maximal insight, detailed knowledge of organismal ecology is also essential.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Anna R Kohrs
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
7
|
Denlinger DS, Hudson SB, Keweshan NS, Gompert Z, Bernhardt SA. Standing genetic variation in laboratory populations of insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) for the evolution of resistance. Evol Appl 2021; 14:1248-1262. [PMID: 34025765 PMCID: PMC8127718 DOI: 10.1111/eva.13194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/02/2023] Open
Abstract
Insecticides can exert strong selection on insect pest species, including those that vector diseases, and have led to rapid evolution of resistance. Despite such rapid evolution, relatively little is known about standing genetic variation for resistance in insecticide-susceptible populations of many species. To help fill this knowledge gap, we generated genotyping-by-sequencing data from insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis sand flies that survived or died from a sub-diagnostic exposure to either permethrin or malathion using a modified version of the Centers for Disease Control and Prevention bottle bioassay. Multi-locus genome-wide association mapping methods were used to quantify standing genetic variation for insecticide resistance in these populations and to identify specific alleles associated with insecticide survival. For each insecticide treatment, we estimated the proportion of the variation in survival explained by the genetic data (i.e., "chip" heritability) and the number and contribution of individual loci with measurable effects. For all treatments, survival to an insecticide exposure was heritable with a polygenic architecture. Both P. papatasi and L. longipalpis had alleles for survival that resided within many genes throughout their genomes. The implications for resistance conferred by many alleles, as well as inferences made about the utility of laboratory insecticide resistance association studies compared to field observations, are discussed.
Collapse
|
8
|
Gompert Z. A population-genomic approach for estimating selection on polygenic traits in heterogeneous environments. Mol Ecol Resour 2021; 21:1529-1546. [PMID: 33682340 DOI: 10.1111/1755-0998.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Strong selection can cause rapid evolutionary change, but temporal fluctuations in the form, direction and intensity of selection can limit net evolutionary change over longer time periods. Fluctuating selection could affect molecular diversity levels and the evolution of plasticity and ecological specialization. Nonetheless, this phenomenon remains understudied, in part because of analytical limitations and the general difficulty of detecting selection that does not occur in a consistent manner. Herein, I fill this analytical gap by presenting an approximate Bayesian computation (ABC) method to detect and quantify fluctuating selection on polygenic traits from population genomic time-series data. I propose a model for environment-dependent phenotypic selection. The evolutionary genetic consequences of selection are then modelled based on a genotype-phenotype map. Using simulations, I show that the proposed method generates accurate and precise estimates of selection when the generative model for the data is similar to the model assumed by the method. The performance of the method when applied to an evolve-and-resequence study of host adaptation in the cowpea seed beetle (Callosobruchus maculatus) was more idiosyncratic and depended on specific analytical choices. Despite some limitations, these results suggest the proposed method provides a powerful approach to connect the causes of (variable) selection to traits and genome-wide patterns of evolution. Documentation and open-source computer software (fsabc) implementing this method are available from github (https://github.com/zgompert/fsabc.git).
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, USA.,Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
9
|
Akopyan M, Gompert Z, Klonoski K, Vega A, Kaiser K, Mackelprang R, Rosenblum EB, Robertson JM. Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic red-eyed treefrog. Mol Ecol 2020; 29:4442-4456. [PMID: 32945036 DOI: 10.1111/mec.15639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Hybrid zones act as natural laboratories where divergent genomes interact, providing powerful systems for examining the evolutionary processes underlying biological diversity. In this study, we characterized patterns of genomic and phenotypic variation resulting from hybridization between divergent intraspecific lineages of the Neotropical red-eyed treefrog (Agalychnis callidryas). We found genetic evidence of a newly discovered contact zone and phenotypic novelty in leg colour-a trait suspected to play a role in mediating assortative mating in this species. Analysis of hybrid ancestry revealed an abundance of later-generation Fn individuals, suggesting persistence of hybrids in the contact zone. Hybrids are predominantly of southern ancestry but are phenotypically more similar to northern populations. Genome-wide association mapping revealed QTL with measurable effects on leg-colour variation, but further work is required to dissect the architecture of this trait and establish causal links. Further, genomic cline analyses indicated substantial variation in patterns of introgression across the genome. Directional introgression of loci associated with different aspects of leg colour are inherited from each parental lineage, creating a distinct hybrid colour pattern. We show that hybridization can generate new phenotypes, revealing the evolutionary processes that potentially underlie patterns of phenotypic diversity in this iconic polytypic frog. Our study is consistent with a role of hybridization and sexual selection in lineage diversification, evolutionary processes that have been implicated in accelerating divergence in the most phenotypically diverse species.
Collapse
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Biology, California State University, Northridge, CA, USA
| | | | - Karina Klonoski
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | | - Kristine Kaiser
- Department of Biology, California State University, Northridge, CA, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | |
Collapse
|
10
|
Forister ML, Yoon SA, Philbin CS, Dodson CD, Hart B, Harrison JG, Shelef O, Fordyce JA, Marion ZH, Nice CC, Richards LA, Buerkle CA, Gompert Z. Caterpillars on a phytochemical landscape: The case of alfalfa and the Melissa blue butterfly. Ecol Evol 2020; 10:4362-4374. [PMID: 32489603 PMCID: PMC7246198 DOI: 10.1002/ece3.6203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Modern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant-animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides melissa) to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance. We find that survival, development time, and adult weight are all associated with variation in nutrition and toxicity, including biomolecules associated with plant cell function as well as putative anti-herbivore action. The plant-insect interface is complex, with clusters of covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar performance. Individual compounds with the strongest associations are largely specialized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins are represented in our data by more than 25 individual compounds with beneficial and detrimental effects on L. melissa caterpillars, which highlights the value of metabolomic data as opposed to approaches that rely on total concentrations within broad defensive classes.
Collapse
Affiliation(s)
- Matthew L. Forister
- Department of BiologyProgram in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
| | - Su'ad A. Yoon
- Department of BiologyProgram in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
| | - Casey S. Philbin
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
- Department of ChemistryUniversity of NevadaRenoNVUSA
| | - Craig D. Dodson
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
- Department of ChemistryUniversity of NevadaRenoNVUSA
| | - Bret Hart
- Department of BiochemistryUniversity of NevadaRenoNVUSA
| | - Joshua G. Harrison
- Department of Botany and Program in EcologyUniversity of WyomingLaramieWYUSA
| | - Oren Shelef
- Department of Natural ResourcesInstitute of Plant SciencesVolcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - James A. Fordyce
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | | | - Chris C. Nice
- Department of Biology, Population and Conservation BiologyTexas State UniversitySan MarcosTXUSA
| | - Lora A. Richards
- Department of BiologyProgram in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
| | - C. Alex Buerkle
- Department of Botany and Program in EcologyUniversity of WyomingLaramieWYUSA
| | - Zach Gompert
- Department of BiologyUtah State UniversityLoganUTUSA
| |
Collapse
|
11
|
Rêgo A, Chaturvedi S, Springer A, Lish AM, Barton CL, Kapheim KM, Messina FJ, Gompert Z. Combining Experimental Evolution and Genomics to Understand How Seed Beetles Adapt to a Marginal Host Plant. Genes (Basel) 2020; 11:genes11040400. [PMID: 32276323 PMCID: PMC7230198 DOI: 10.3390/genes11040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Genes that affect adaptive traits have been identified, but our knowledge of the genetic basis of adaptation in a more general sense (across multiple traits) remains limited. We combined population-genomic analyses of evolve-and-resequence experiments, genome-wide association mapping of performance traits, and analyses of gene expression to fill this knowledge gap and shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency change across replicate lines during adaptation to lentil. Mapping populations derived from each lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and development time), which had low to modest heritabilities. We found less evidence of parallelism in genotype-phenotype associations across these lines than in allele frequency changes during the experiments. Differential gene expression caused by differences in recent evolutionary history exceeded that caused by immediate rearing host. Together, the three genomic datasets suggest that genes affecting traits other than weight and development time are likely to be the main causes of parallel evolution and that detoxification genes (especially cytochrome P450s and beta-glucosidase) could be especially important for colonization of lentil by C. maculatus.
Collapse
Affiliation(s)
- Alexandre Rêgo
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
- Department of Zoology, Stockholm University, 114 19 Stockholm, Sweden
| | - Samridhi Chaturvedi
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| | - Amy Springer
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Alexandra M. Lish
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Caroline L. Barton
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Karen M. Kapheim
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Frank J. Messina
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
- Correspondence:
| |
Collapse
|