1
|
Charif SE, Inserra PIF, Villarreal FM, Schmidt AR, Cortasa SA, Proietto S, Corso MC, Llanos Dumont MI, Di Giorgio NP, Halperin J, Vitullo AD, Dorfman VB. Light/darkness modulation of the hypothalamic-pituitary-ovarian axis in the plains vizcacha, Lagostomus maximus, a seasonal breeding species. Gen Comp Endocrinol 2025; 366:114714. [PMID: 40139328 DOI: 10.1016/j.ygcen.2025.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Photoperiod is the main environmental signal that affects animal behavior and reproduction. Light stimulus is traduced by a neural pathway that modulates pineal gland melatonin release, which synchronizes physiologic functions with day duration, highly influencing seasonal reproduction. The plains vizcacha (Lagostomus maximus) is a Hystricomorph rodent with seasonal reproduction that inhabits the Neotropic in South America. The aim of this work was to elucidate the effect of light/darkness exposition on the reproductive hypothalamic-pituitary-ovarian (HPO) axis in the female plains vizcacha. During 15 days, animals were subjected to different light/darkness regimens (Control group, CTL: 12:12 h dark:light; Darkness group, DARK: continuous darkness; Light group, LIGHT: continuous light). The melatoninergic system and reproductive hormones were evaluated. Plasma melatonin levels significantly decreased in DARK whereas both melatonin receptors (MT1 and MT2) expression significantly increased in the hypothalamus and decreased in the pituitary gland, and only MT1 expression increased in the ovaries. Continuous light did not induce significant variations in melatonin levels related to CTL, however, MTs expression changed at pituitary and ovary levels. Strikingly, both light/darkness regimens increased reproductive hormone expression. While darkness induced hypothalamic gonadotropin-releasing hormone (GnRH) expression and estradiol (E2) secretion, light increased LH and progesterone (P4) secretion. In conclusion, light availability may impact the reproductive axis of plains vizcacha inducing hormonal changes, with an organ-specific response, and sustaining HPO axis activity, thus ensuring reproduction. Environmental light and darkness, their availability and exposure length, could synchronize the reproductive axis in seasonal breeding species like the plains vizcacha. New & Noteworthy: Hypothalamic, pituitary, and ovarian variations were induced by continuous light or darkness in the plains vizcacha. Plasma melatonin decreased by continuous darkness-inducing hypothalamic, pituitary, and ovarian melatonin receptors variations. Fifteen days of continuous darkness induced GnRH, LH, and estradiol secretion, while 15 days of continuous light induced LH and P4 secretion. Environmental light/darkness would synchronize the reproductive axis in seasonal breeding species like the plains vizcacha.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Technology Institute (INTEC), Universidad Argentina de la Empresa (UADE), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico Martín Villarreal
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Micaela Inés Llanos Dumont
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Zhai M, Cao S, Liang H, Xie Y, Zhao Z. A New Function of the DRD1 Gene: GnRH Secretion Regulation in Sheep Hypothalamic Neurons. Genes (Basel) 2025; 16:273. [PMID: 40149425 PMCID: PMC11942299 DOI: 10.3390/genes16030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Dopamine (DA) is an important neurotransmitter that is widely present in the central nervous system. DA plays a crucial regulatory role in mammalian emotion, endocrine function, and reproduction through the activation of dopamine receptors. We compared the transcriptomes of hypothalamic tissues from Kazakh sheep during the nonbreeding season of anoestrus and during the nutrient-induced nonbreeding season of oestrus. Our research findings suggest that the dopamine receptor D1 (DRD1) gene may be a candidate gene for the regulation of sheep oestrus. However, the underlying mechanism through which DRD1 regulates sheep oestrus is still poorly understood. METHODS In the present study, the expression of DRD1 mRNA in the hypothalamus of oestrous Kazakh sheep was significantly greater than that in the anoestrous phase. Immunohistochemical staining revealed that DRD1 was more widely expressed in hypothalamic tissue and was more highly expressed during oestrus than during anoestrus. Hypothalamic neuron experiments further indicated that DRD1 affects the expression of GnRH through dopamine synapses and calcium signalling pathways. RESULTS moreover, the overexpression of the DRD1 gene promoted the secretion of GnRH, while knocking down the DRD1 gene reduced the secretion of GnRH. CONCLUSIONS The present study revealed that the DRD1 gene plays a crucial regulatory role in the secretion of the hormone GnRH in the hypothalamus of Kazakh sheep.
Collapse
Affiliation(s)
- Manjun Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shaoqi Cao
- Xinjiang Uygur Autonomous Region Animal Husbandry General Station, Urumqi 830001, China; (S.C.); (H.L.)
| | - Huihui Liang
- Xinjiang Uygur Autonomous Region Animal Husbandry General Station, Urumqi 830001, China; (S.C.); (H.L.)
| | - Yifan Xie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (Y.X.); (Z.Z.)
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (Y.X.); (Z.Z.)
| |
Collapse
|
3
|
Wang L, Li Z, Song Y, Li N, Liu XH, Wang D. Divergent Photoperiodic Responses in Hypothalamic Dio3 Expression and Gonadal Activity Between Offspring and Paternal Brandt's Voles. Animals (Basel) 2025; 15:469. [PMID: 40002951 PMCID: PMC11851783 DOI: 10.3390/ani15040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The postnatal development of gonadal glands in seasonal breeders, particularly small rodent species, is influenced by photoperiodic patterns. However, little research has been conducted on the effects of pattern similarity and age differentiation especially in molecular features. This study compares the postnatal development of gonadal glands and the expression of hypothalamic genes related to reproductive regulation in male offspring of Brandt's voles (Lasiopodomys brandtii) born under three types of changing photoperiodic patterns: increasing long photoperiod (ILP, 12 h + 3 min/day), natural increasing long photoperiods (NLPs), and decreasing short photoperiods (DSPs, 12 h - 3 min/day), as well as in their paternal voles exposed to these patterns at the same period. Results indicate that over the course of 12 postnatal weeks, gonadal development, including organ masses and serum testosterone levels, exhibited similar profiles between the ILP and NLP groups, which were significantly higher than those observed in DSP offspring. Hypothalamic type 3 iodothyronine deiodinase (Dio3) exhibited significantly higher expression in the DSP group from postnatal week 4 to 8 compared to the other two groups. These physiological and molecular differences gradually decreased with age in offspring, but were never observed in the paternal voles, indicating divergent photoperiodic responses between the two ages. The synchronous profiles observed between hypothalamic Dio3 expression and gonadal activities underscore its crucial role in interpreting photoperiodic signals and regulating gonadal development in Brandt's voles.
Collapse
Affiliation(s)
- Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Zhengguang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Xiao-Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Z.L.); (Y.S.); (X.-H.L.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
4
|
Wu Z, Li L, Chen S, Gong Y, Liu Y, Jin T, Wang Y, Tang J, Dong Q, Yang B, Yang F, Dong W. Microbiota contribute to regulation of the gut-testis axis in seasonal spermatogenesis. THE ISME JOURNAL 2025; 19:wraf036. [PMID: 39999373 PMCID: PMC11964897 DOI: 10.1093/ismejo/wraf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Seasonal breeding is an important adaptive strategy for animals. Recent studies have highlighted the potential role of the gut microbiota in reproductive health. However, the relationship between the gut microbiota and reproduction in seasonal breeders remains unclear. In this study, we selected a unique single food source animal, the flying squirrel (Trogopterus xanthipes), as a model organism for studying seasonal breeding. By integrating transcriptomic, metabolomic, and microbiome data, we comprehensively investigated the regulation of the gut-metabolism-testis axis in seasonal breeding. Here, we demonstrated a significant spermatogenic phenotype and highly active spermatogenic transcriptional characteristics in the testes of flying squirrels during the breeding season, which were associated with increased polyamine metabolism, primarily involving spermine and γ-amino butyric acid. Moreover, an enrichment of Ruminococcus was observed in the large intestine during the breeding season and may contribute to enhanced methionine biosynthesis in the gut. Similar changes in Ruminococcus abundance were also observed in several other seasonal breeders. These findings innovatively revealed that reshaping the gut microbiota regulates spermatogenesis in seasonal breeders through polyamine metabolism, highlighting the great potential of the gut-testis axis in livestock animal breeding and human health management.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Tang
- Shaanxi Institute of Zoology, Xi'an, Shaanxi 710032, China
| | - Qian Dong
- Department of Thyroid and Breast Surgery, Shenzhen Luohu Hospital Group Luohu People’s Hospital (Third Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518000, China
| | - Bangzhu Yang
- Luonan Science and Technology Bureau, Shangluo, Shaanxi 726000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Zhao L, Gong F, Lou K, Wang L, Wang J, Sun H, Wang D, Shi Y, Wang Z. Retrotransposon involves in photoperiodic spermatogenesis in Brandt's voles (Lasiopodomys brandtii) by co-transcription with flagellar genes. Int J Biol Macromol 2024; 281:136224. [PMID: 39362423 DOI: 10.1016/j.ijbiomac.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Photoperiod is a pivotal factor in affecting spermatogenesis in seasonal-breeding animals. Transposable elements have regulatory functions during spermatogenesis. However, whether it also functions in photoperiodic spermatogenesis in seasonal breeding animals is unknown. To explore this, we first annotated 5,501,822 transposons in the whole genome of Brandt's voles (Lasiopodomys brandtii), and revealed that LINEs were the most abundant, comprising 16.61 % of the genome. Following closely, SINEs accounted for 10.13 %, LTRs for 7.54 %, and DNA transposons for 0.70 %. Subsequently, we exposed male Brandt's voles to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) from their embryonic stages, and obtained testes transcriptome at 4 and 10 weeks after birth. Differential expression and Pearson analysis indicated strongly positive correlations between the expression of differentially expressed retrotransposons and the adjacent genes. KO, KEGG and GSEA results showed that sperm flagellar genes were most enriched nearby the retrotransposons such as Dnah1, Dnah2, Dnah17, Dnali1. RT-PCR results showed that SINE/Alu_1213291 co-transcripted with Dnali1 gene. Our findings first reveal the regulatory function of transposons in photoperiodic spermatogenesis, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kang Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China.
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Zhao L, Chen C, Wang L, Liu Y, Gong F, Wang J, Sun H, Wang D, Wang Z. Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii). Integr Zool 2024; 19:1105-1120. [PMID: 38556617 DOI: 10.1111/1749-4877.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxiao Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Wang S, Xu J, Wang X, Wang M, Xue H, Wu M, Fan C, Chen L, Xu L. cba-miR-222-3p involved in photoperiod-induced apoptosis in testes of striped hamsters by targeting TRAF7. Integr Zool 2024. [PMID: 39466916 DOI: 10.1111/1749-4877.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The role of miRNAs in the regulation of seasonal reproduction in rodents, particularly in relation to photoperiod changes, is still poorly understood. Previous studies on miRNA transcriptomes of striped hamster (Cricetulus barabensis) testes have indicated that the photoperiodism of testes, especially apoptosis, may be influenced by miRNAs. As a functional miRNA, cba-miR-222-3p in striped hamster testes exhibits suppression under a short photoperiod. To elucidate the potential role of testicular cba-miR-222-3p in the seasonal reproduction of striped hamsters, we exposed male striped hamsters to different photoperiods or injected miRNA agomir into the testes and observed the effects of these treatments, particularly some indicators related to apoptosis. The results showed that the levels of apoptosis in the testes increased in short daylength, accompanied by a significant decrease in cba-miR-222-3p expression and an increase in TRAF7 expression. Dual luciferase reporter assays verified the targeting relationship between cba-miR-222-3p and TRAF7 predicted by bioinformatics. In addition, the expression of TRAF7 decreased in the testes, which injected miRNA agomir, leading to inhibition of apoptosis, and the expression of key genes (MEKK3, p38, p53) in the downstream MAPK signaling pathway of TRAF7 was suppressed. These results suggest that short daylength induces testicular apoptosis in striped hamsters, and one possible mechanism is that the decreased expression of miR-222-3p in testes reduces the repression of TRAF7 translation, thereby activating the MAPK pathway and affecting the level of testicular apoptosis. These findings reveal the potential role of miR-222-3p in animal reproduction and provide new insights into the regulation of rodent populations.
Collapse
Affiliation(s)
- Shuo Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xingchen Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Mingdi Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huiliang Xue
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Chao Fan
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
8
|
Li X, Li N, Yao D, Liu Y, Song Y, Wang D, Feng Z, Liu X. Adaptive divergence in reproductive seasonality and underlying physiological features fit Rattus norvegicus to live as opportunistic breeders. Integr Zool 2024. [PMID: 39434199 DOI: 10.1111/1749-4877.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
How organisms respond to complex environments is one of the unsolved problems in ecology. Life history patterns of a species provide essential information on how different populations may respond and adapt to environmental changes. Compared to typical seasonal breeders, which have limited distributions, the worldwide distribution of brown rats (Rattus norvegicus) across highly complex and divergent habitats suggests they exhibit exceptional adaptiveness. However, the difference in physiological mechanisms by which brown rats respond and adapt to markedly different environments is seldom investigated. Here, we reveal a significant divergence in reproductive seasonality and environmental responses between two brown rat subspecies: one subspecies, R. n. caraco, lives in the temperate zone, and another subspecies, R. n. norvegicus, lives in the subtropical region. Although R. n. caraco displayed a significantly higher reproductive seasonality than R. n. norvegicus, both subspecies adapted to sub-optimal breeding conditions mainly by regulating the seminal vesicle rather than testis development. Especially in responding to severe winter conditions in high-latitude regions, bodyweight-dependent recovery of testicular development in adults enables R. n. caraco to initiate reproduction more rapidly when conditions are suited. These findings elucidate a regulatory process of how brown rats live as opportunistic breeders by benefiting from enhanced semen production.
Collapse
Affiliation(s)
- Xixuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dandan Yao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Yu Liu
- Plant Protection Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultura Science, Changji, China
| | - Zhiyong Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Qiao Y, Li N, Song Y, Liu X, Wang D. Short photoperiod inhibited gonadal growth and elevated hypothalamic Dio3 expression unrelated to promoter DNA methylation in young Brandt's voles. Integr Zool 2024. [PMID: 39180280 DOI: 10.1111/1749-4877.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Photoperiod, the length of daylight, has a significant impact on the physiological characteristics of seasonal breeding animals, including their somatic and gonadal development. In rodents, expression of deiodinase type II (Dio2) and III (Dio3) in the hypothalamus is crucial for responding to photoperiodic signals. However, research on the photoperiodism of hypothalamic gene expression and the corresponding regulatory mechanism in Brandt's voles living in the Mongolian steppes is limited. In this study, we gradually changed day length patterns to simulate spring (increasing long photoperiod, ILP) and autumn (decreasing short photoperiod, DSP). We compared the somatic and gonadal development of voles born under ILP and DSP and the expression patterns of five reproduction-related genes in the hypothalamus of young voles. The results showed that DSP significantly inhibited somatic and gonadal development in both female and male offspring. Compared with ILP, Dio3 expression was significantly upregulated in the hypothalamus under DSP conditions and remained elevated until postnatal week 8 in both males and females. However, there was no significant difference in the methylation levels of the proximal promoter region of Dio3 between ILP and DSP, suggesting that methylation in the proximal promoter region may not be involved in regulating the expression of Dio3. These findings suggest that hypothalamic expression of Dio3 plays a key role in the photoperiodic regulation of gonadal activity in Brandt's voles. However, it appears that CpGs methylation in the promoter region is not the main mechanism regulating Dio3 expression.
Collapse
Affiliation(s)
- Yanting Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Science, Changji, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
Gao Q, Lu W, Fan S, Xie W, Zhang H, Han Y, Weng Q. Seasonal changes in endoplasmic reticulum stress and steroidogenesis in the ovary of the wild ground squirrels (Citellus dauricus Brandt). Gen Comp Endocrinol 2023; 343:114368. [PMID: 37604348 DOI: 10.1016/j.ygcen.2023.114368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The development of the follicle is accompanied by steroidogenesis and secretion, the endoplasmic reticulum (ER) requires significant synthesis of relevant proteins to support changes in the follicular microenvironment. The aim of this study was to investigate whether seasonal changes in gonadotropins and ovarian steroid hormones in the wild ground squirrels induce endoplasmic reticulum stress (ERS) and changes in ERS-mediated unfolded protein response (UPR) signaling. There were significant seasonal differences in ovarian mass, with values higher in the breeding season and relatively low in the non-breeding season. Histological observations revealed that ovaries in the breeding season had germ cells including primordial follicles, primary follicles, secondary follicles, tertiary follicles, and the corpus luteal, whereas ovaries consisted mainly of primary and secondary follicles in the non-breeding season. Analysis of ovarian transcriptome data showed that 1298 genes were up-regulated in expression and 1432 genes were down-regulated in expression during both periods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that these genes were mainly enriched in estrogen signaling pathways, ovarian steroidogenesis and endoplasmic reticulum protein processing pathways. The expression levels of steroidogenic enzymes (P450scc, P450c17, 3β-HSD, and P450arom) and gonadotropin receptor (FSHR and LHR) were significantly increased during the breeding season compared to the non-breeding season. GRP78 and UPR signaling factors (ATF4, ATF6, XBP1s) associated with ERS were expressed in both seasons. The mRNA expressions of Atf6 and Xbp1s were higher in the breeding season than those of the non-breeding season. Conversely, Atf4 and its downstream homologous protein (Chop) exhibited higher expression during the non-breeding season. In addition, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17β, and progesterone of serum were significantly higher in the breeding season than those of the non-breeding season. These results suggested that UPR signaling, associated with seasonal changes in ovarian steroidogenesis, was activated during the breeding season and that ERS might be involved in regulating seasonal changes in ovarian steroidogenesis in the wild ground squirrels.
Collapse
Affiliation(s)
- Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjing Lu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sijie Fan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenqiang Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
11
|
Bao Q, Gu W, Song L, Weng K, Cao Z, Zhang Y, Zhang Y, Ji T, Xu Q, Chen G. The Photoperiod-Driven Cyclical Secretion of Pineal Melatonin Regulates Seasonal Reproduction in Geese ( Anser cygnoides). Int J Mol Sci 2023; 24:11998. [PMID: 37569373 PMCID: PMC10419153 DOI: 10.3390/ijms241511998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The photoperiod is the predominant environmental factor that governs seasonal reproduction in animals; however, the underlying molecular regulatory mechanism has yet to be fully elucidated. Herein, Yangzhou geese (Anser cygnoides) were selected at the spring equinox (SE), summer solstice (SS), autumn equinox (AE), and winter solstice (WS), and the regulation of seasonal reproduction via the light-driven cyclical secretion of pineal melatonin was investigated. We show that there were seasonal variations in the laying rate and GSI, while the ovarian area decreased 1.5-fold from the SS to the AE. Moreover, not only did the weight and volume of the pineal gland increase with a shortened photoperiod, but the secretory activity was also enhanced. Notably, tissue distribution further revealed seasonal oscillations in melatonin receptors (Mtnrs) in the pineal gland and the hypothalamus-pituitary-gonadal (HPG) axis. The immunohistochemical staining indicated higher Mtnr levels due to the shortened photoperiod. Furthermore, the upregulation of aralkylamine N-acetyltransferase (Aanat) was observed from the SS to the AE, concurrently resulting in a downregulation of the gonadotrophin-releasing hormone (GnRH) and gonadotropins (GtHs). This trend was also evident in the secretion of hormones. These data indicate that melatonin secretion during specific seasons is indicative of alterations in the photoperiod, thereby allowing for insight into the neuroendocrine regulation of reproduction via an intrinsic molecular depiction of external photoperiodic variations.
Collapse
Affiliation(s)
- Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Wang Gu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Lina Song
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Kaiqi Weng
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Zhengfeng Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Ting Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Tian L, Li X, Ying Y, Wang L, Qiao Y, Wang D, Song Y, Li N, Liu X. Pitx2 suppression at meiotic stages associates with seasonal inhibition of testis development in Rattus norvegicus caraco. Integr Zool 2023; 18:543-551. [PMID: 35639924 DOI: 10.1111/1749-4877.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bicoid-related transcription factor 2 (Pitx2) plays a crucial role in the development of many organs and tissues by affecting the mitotic cell cycle. Postnatal testis development is related to mitosis and meiosis in multiple cell types, but the role of Pitx2 gene in seasonal inhibition of testicular development remains unknown in rodents. We analyzed PITX2 protein and Pitx2 mRNA expression features using both laboratory and wild male Rattus norvegicus caraco. In postnatal testicle of laboratory colony, we found that PITX2 was expressed in Leydig cells, pachytene spermatocytes, round spermatids, and elongating spermatids rather than spermatogonia and leptotene/zygotene spermatocytes. Pitx2b expression significantly increased along with the occurrence of pachytene spermatocytes and round spermatids, while decreased along with the processes of elongated spermatids. In wild male rats with similar testes weight, a significantly suppressed Pitx2b expression occurred with an active meiotic stage in the inhibited testes in autumn and winter, compared with the normally developing testes in spring and summer. These results indicate that Pitx2b expression suppression plays a crucial role in the seasonal inhibition of testis development.
Collapse
Affiliation(s)
- Lin Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xixuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Ying
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Effects of Group Size on Behavior, Reproduction, and mRNA Expression in Brains of Brandt's Voles. Brain Sci 2023; 13:brainsci13020311. [PMID: 36831854 PMCID: PMC9954483 DOI: 10.3390/brainsci13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
For social animals, a moderate group size is greatly important to maintain their reproductive success. However, the underlying neurobiological mechanism of group size on behavior and reproduction has rarely been investigated. In this study, we examined the effects of group size (1, 2, 4 pairs of adult male and female voles raised per cage) on behavior and reproduction. Meanwhile, the mRNA expression of stress and reproduction response-related genes in male brains was detected. We found that Brandt's voles (Lasiopodomys brandtii) in the large-sized group fight more severely than those in the small-sized group. Meanwhile, male voles were more anxious than females. The average number of embryos and litters per female in the medium-sized group was significantly higher than that of large-sized group. In male voles, stress- or reproduction-response mRNA expressions were more related to final group size or final density due to death caused by fighting. Our results indicated that a moderate group size was beneficial to the reproductive output of Brandt's voles. Our study highlights the combined effects of stress- or reproduction-related gene expression or behavior in regulating the fitness of voles with different group sizes.
Collapse
|
14
|
Du M, Wang D, Liu S, Lv C, Zhu Y. Rodent hole detection in a typical steppe ecosystem using UAS and deep learning. FRONTIERS IN PLANT SCIENCE 2022; 13:992789. [PMID: 36589056 PMCID: PMC9800863 DOI: 10.3389/fpls.2022.992789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Rodent outbreak is the main biological disaster in grassland ecosystems. Traditional rodent damage monitoring approaches mainly depend on costly field surveys, e.g., rodent trapping or hole counting. Integrating an unmanned aircraft system (UAS) image acquisition platform and deep learning (DL) provides a great opportunity to realize efficient large-scale rodent damage monitoring and early-stage diagnosis. As the major rodent species in Inner Mongolia, Brandt's voles (BV) (Lasiopodomys brandtii) have markedly small holes, which are difficult to identify regarding various seasonal noises in this typical steppe ecosystem. METHODS In this study, we proposed a novel UAS-DL-based framework for BV hole detection in two representative seasons. We also established the first bi-seasonal UAS image datasets for rodent hole detection. Three two-stage (Faster R-CNN, R-FCN, and Cascade R-CNN) and three one-stage (SSD, RetinaNet, and YOLOv4) object detection DL models were investigated from three perspectives: accuracy, running speed, and generalizability. RESULTS Experimental results revealed that: 1) Faster R-CNN and YOLOv4 are the most accurate models; 2) SSD and YOLOv4 are the fastest; 3) Faster R-CNN and YOLOv4 have the most consistent performance across two different seasons. DISCUSSION The integration of UAS and DL techniques was demonstrated to utilize automatic, accurate, and efficient BV hole detection in a typical steppe ecosystem. The proposed method has a great potential for large-scale multi-seasonal rodent damage monitoring.
Collapse
Affiliation(s)
- Mingzhu Du
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Blockchain Application, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Shengping Liu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Blockchain Application, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chunyang Lv
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yeping Zhu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Pérez JH. Light receptors in the avian brain and seasonal reproduction. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:985-993. [PMID: 36052512 DOI: 10.1002/jez.2652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Detection and transduction of photic cues by nonvisual photoreceptors, located in the deep brain, is a critical component of timing seasonal reproduction in birds. However, the precise identity of the photoreceptors responsible for detection of salient photic cues remains uncertain and debated. Here I review of the existing evidence for each of the three candidate photoreceptive opsins: Vertebrate Ancient Opsin, Melanopsin, and Neuropsin, including localization, action spectrum, and data from experimental manipulation of opsin expression. These findings are compared to an updated list of key criteria established in the literature as a litmus for classifying an opsin as the "breeding photoreceptor." Integrating evidence for each of the candidate photoreceptors with respect to these criteria reveals support for all three opsins in regulation of seasonal reproduction. Taken together these findings strongly suggest that transduction of seasonal photoperiodic information involves the activity of multiple photoreceptor types and populations functioning in concert. This review also highlights the need to shift attention from simply identifying "the breeding photoreceptor" to a more integrative approach aiming to parse the contribution of specific photoreceptor populations within the brain.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Biology, The University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
16
|
Zhu H, Li G, Liu J, Xu X, Zhang Z. Gut microbiota is associated with the effect of photoperiod on seasonal breeding in male Brandt's voles (Lasiopodomys brandtii). MICROBIOME 2022; 10:194. [PMID: 36376894 PMCID: PMC9664686 DOI: 10.1186/s40168-022-01381-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/27/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seasonal breeding in mammals has been widely recognized to be regulated by photoperiod, but the association of gut microbiota with photoperiodic regulation of seasonal breeding has never been investigated. RESULTS In this study, we investigated the association of gut microbiota with photoperiod-induced reproduction in male Brandt's voles (Lasiopodomys brandtii) through a long-day and short-day photoperiod manipulation experiment and fecal microbiota transplantation (FMT) experiment. We found photoperiod significantly altered reproductive hormone and gene expression levels, and gut microbiota of voles. Specific gut microbes were significantly associated with the reproductive hormones and genes of voles during photoperiod acclimation. Transplantation of gut microbes into recipient voles induced similar changes in three hormones (melatonin, follicle-stimulating hormone, and luteinizing hormone) and three genes (hypothalamic Kiss-1, testicular Dio3, and Dio2/Dio3 ratio) to those in long-day and short-day photoperiod donor voles and altered circadian rhythm peaks of recipient voles. CONCLUSIONS Our study firstly revealed the association of gut microbiota with photoperiodic regulation of seasonal breeding through the HPG axis, melatonin, and Kisspeptin/GPR54 system. Our results may have significant implications for pest control, livestock animal breeding, and human health management. Video Abstract.
Collapse
Affiliation(s)
- Hanyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Zubair H, Shamas S, Ullah H, Nabi G, Huma T, Ullah R, Hussain R, Shahab M. Morphometric and Myelin Basic Protein Expression Changes in Arcuate Nucleus Kisspeptin Neurons Underlie Activation of Hypothalamic Pituitary Gonadal-axis in Monkeys ( Macaca Mulatta) during the Breeding Season. Endocr Res 2022; 47:113-123. [PMID: 35866239 DOI: 10.1080/07435800.2022.2102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Kisspeptin is involved in the hypothalamic pituitary gonadal-axis' seasonal regulation in rodents and sheep. Studies of kisspeptin signaling in regulating the transition between breeding and nonbreeding seasons have focused on kisspeptin expression, myelin basic protein (MBP) expression around kisspeptin-ir cells, and quantifying the synaptic connections between kisspeptin and gonadotropin-releasing hormone (GnRH) neurons in various animal models; however, the role of kisspeptin in regulating the seasonal breeding of primates has not been explored yet. OBJECTIVE This study investigated changes in kisspeptin signaling during breeding and a non-breeding season in a non-human primate model, the rhesus monkey. METHODS Three adult male monkeys (n = 3) from the breeding season and two monkeys (n = 2) from the non-breeding season were used in this study. After measuring the testicular volume and collecting a single blood sample, all animals were humanely euthanized under controlled conditions, and their hypothalami were collected and processed. Two 20 µm thick hypothalamic sections (mediobasal hypothalamus) from each animal were processed for kisspeptin-MBP and kisspeptin-GnRH immunohistochemistry (IHC). One section from each animal was used as a primary antibody omitted control to check the nonspecific binding in each IHC. RESULTS Compared to the non-breeding season, plasma testosterone levels and testicular volumes were significantly higher in monkeys during the breeding season. Furthermore, compared to the non-breeding season, increased kisspeptin expression and a higher number of synaptic contacts between kisspeptin fibers and GnRH cell bodies were observed in the arcuate nucleus of the breeding season monkeys. In contrast, enlarged kisspeptin soma and higher MBP expression were observed in non-breeding monkeys. CONCLUSION Our results indicated enhanced kisspeptin signaling in primate hypothalamus during the breeding season. These findings support the idea that kisspeptin acts as a mediator for the seasonal regulation of the reproductive axis in higher primates.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Shamas
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Hamid Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Tanzeel Huma
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, ZJ, China
| | - Rashad Hussain
- Department of Neurology, Center for Translational Neuro-medicine, University of Rochester, Rochester, NY, USA
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
18
|
van Rosmalen L, Riedstra B, Beemster N, Dijkstra C, Hut RA. Differential temperature effects on photoperiodism in female voles: A possible explanation for declines in vole populations. Mol Ecol 2022; 31:3360-3373. [PMID: 35398940 PMCID: PMC9325516 DOI: 10.1111/mec.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Many mammalian species use photoperiod as a predictive cue to time seasonal reproduction. In addition, metabolic effects on the reproductive axis may also influence seasonal timing, especially in female small, short-lived mammals. To get a better understanding of how annual cycling environmental cues impact reproductive function and plasticity in small, short-lived herbivores with different geographic origins, we investigated the mechanisms underlying integration of temperature in the photoperiodic-axis regulating female reproduction in a Northern vole species (tundra vole, Microtus oeconomus) and in a Southern vole species (common vole, Microtus arvalis). We show that photoperiod and temperature interact to determine appropriate physiological responses; there is species-dependent annual variation in the sensitivity to temperature for reproductive organ development. In common voles, temperature can overrule photoperiodical spring-programmed responses, with reproductive organ mass being higher at 10°C than at 21°C, whereas in autumn they are less sensitive to temperature. These findings are in line with our census data, showing an earlier onset of spring reproduction in cold springs, while reproductive offset in autumn is synchronized to photoperiod. The reproductive organs of tundra voles were relatively insensitive to temperature, whereas hypothalamic gene expression was generally upregulated at 10°C. Thus, both vole species use photoperiod, whereas only common voles use temperature as a cue to control spring reproduction, which indicates species-specific reproductive strategies. Due to global warming, spring reproduction in common voles will be delayed, perhaps resulting in shorter breeding seasons and thus declining populations, as observed throughout Europe.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Present address:
Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Bernd Riedstra
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nico Beemster
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Present address:
Altenburg & Wymenga Ecological ConsultantsFeanwâldenThe Netherlands
| | - Cor Dijkstra
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
19
|
Pérez JH. Revisiting TSHβ's Role in Avian Seasonal Reproduction, Insights and Challenges from Mammalian Models. Integr Comp Biol 2022; 62:1022-1030. [PMID: 35640909 DOI: 10.1093/icb/icac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
The core neuroendocrine pathways regulating seasonal reproduction in vertebrates were characterized over a decade ago. This has led to the development of a "consensus" model of seasonal reproduction that appears to be largely conserved across mammals, birds, amphibians, reptile and fish. This model centers around the photoinduced increase in TSHβ expression in the pars tuberalis (PT) of the anterior pituitary gland as the key transducer of photic information from sensory cells to the critical switch in hypothalamic deiodinase enzyme expression that drives changes in localized thyroid hormone signaling. These changes in localized thyroid hormone signaling in the medial basal hypothalamus ultimately activate the reproductive axis. This model has in turn been consistently supported by studies in a variety of taxa. As such it has become the definitional standard against which subsequent work is compared, particularly in the non-mammalian literature. However, as new studies move away from the handful of canonical model systems and begin to explore the effects of naturalistic rather than artificial photoperiod manipulations a more nuanced picture has begun to emerge. Yet, progress in elucidating the detailed events of reproductive photostimulation has been uneven across the research community. In this perspective I draw on emerging data from studies in free living animals that challenges some of the established assumptions of the avian consensus model of reproduction. Specifically, the role of TSHβ and its dissociation from deiodinase signaling. I then discuss how these apparently surprising findings can be contextualized within the context of the mammalian seasonal literature. In turn this ability to contextualize from the mammalian literature highlights the breadth of the current gap I our understanding of the molecular neuroendocrine mechanisms of seasonality in mammals versus birds and other non-mammalian seasonal breeders.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Biology Department, The University of South Alabama, Mobile Alabama, 36688, USA
| |
Collapse
|
20
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Seasonal Expression of Gonadotropin Genes in the Pituitary and Testes of Male Plateau Zokor (Eospalax baileyi). Animals (Basel) 2022; 12:ani12060725. [PMID: 35327122 PMCID: PMC8944513 DOI: 10.3390/ani12060725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/30/2023] Open
Abstract
The gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are glycoprotein hormones in the hypothalamic-pituitary-gonadal (HPG) axis and regulate mammalian reproduction. The expression of these genes in the plateau zokor (Eospalax baileyi) is poorly understood. We characterized the immunolocalization of the luteinizing hormone receptor (LHR) and follicle stimulating hormone receptor (FSHR) in the testes and evaluated the positive immunohistochemical results and the relative mRNA expression of gonadotropin genes. During the non-breeding season (September), the relative testes weight and the seminiferous tubule diameter were significantly reduced. All germ cell types were observed during the breeding season (May), whereas only spermatogonia were observed during the non-breeding season. LHR was present in the Leydig cells whereas FSHR was present in the Sertoli cells. The mean optical density was higher during the breeding season. The mRNA expression of LHβ and FSHβ was lower in the pituitary but LHR and FSHR genes expression were higher in the testes during the breeding season. These data elucidate the expression of gonadotropin genes in the HPG axis of the male plateau zokor and suggest that gonadotropins play a vital role in the regulation of seasonal breeding.
Collapse
|
22
|
van Rosmalen L, Hut RA. Food and temperature change photoperiodic responses in two vole species. J Exp Biol 2021; 224:273462. [PMID: 34787302 DOI: 10.1242/jeb.243030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 01/23/2023]
Abstract
Seasonal timing of reproduction in voles is driven by photoperiod. We hypothesized that a negative energy balance can modify spring-programmed photoperiodic responses in the hypothalamus, controlling reproductive organ development. We manipulated energy balance by the 'work-for-food' protocol, in which voles were exposed to increasing levels of food scarcity at different ambient temperatures under long photoperiod. We found that in common voles (Microtus arvalis) and tundra voles (Microtus oeconomus), photoperiod-induced pars tuberalis thyroid-stimulating hormone β-subunit (Tshβ) expression is reduced to potentially inhibit gonadal development when food is scarce. Reduction in gonadal size is more pronounced in tundra voles, in which anterior hypothalamic Kiss1 is additionally downregulated, especially in males. Low temperature additionally leads to decreased hypothalamic Rfrp expression, which potentially may facilitate further suppression of gonadal growth. Shutting off the photoperiodic axis when food is scarce in spring may be an adaptive response to save energy, leading to delayed reproductive organ development until food resources are sufficient for reproduction, lactation and offspring survival. Defining the mechanisms through which metabolic cues modify photoperiodic responses will be important for a better understanding of how environmental cues impact reproduction.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Poissenot K, Chorfa A, Moussu C, Trouillet AC, Brachet M, Chesneau D, Chemineau P, Ramadier E, Pinot A, Benoit E, Lattard V, Dardente H, Drevet J, Saez F, Keller M. Photoperiod is involved in the regulation of seasonal breeding in male water voles (Arvicola terrestris). J Exp Biol 2021; 224:272112. [PMID: 34494651 DOI: 10.1242/jeb.242792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.
Collapse
Affiliation(s)
- Kevin Poissenot
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Areski Chorfa
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001, Clermont-Ferrand Cedex, France
| | - Chantal Moussu
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Anne-Charlotte Trouillet
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Morgane Brachet
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Didier Chesneau
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Philippe Chemineau
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Etienne Ramadier
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Adrien Pinot
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Etienne Benoit
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, INRAE, VetAgro Sup, Université de Lyon, F-69280 Marcy l'Etoile, France
| | - Hugues Dardente
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Joël Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001, Clermont-Ferrand Cedex, France
| | - Fabrice Saez
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, 28 place Henri Dunant, 63001, Clermont-Ferrand Cedex, France
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| |
Collapse
|
24
|
Pérez JH, Krause JS, Bishop VR, Reid AMA, Sia M, Wingfield JC, Meddle SL. Seasonal differences in hypothalamic thyroid-stimulating hormone β, gonadotropin-releasing hormone-I and deiodinase expression between migrant and resident subspecies of white-crowned sparrow (Zonotrichia leucophrys). J Neuroendocrinol 2021; 33:e13032. [PMID: 34463408 DOI: 10.1111/jne.13032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Across taxa, the seasonal transition between non-breeding and breeding states is controlled by localised thyroid hormone signalling in the deep brain via reciprocal switching of deiodinase enzyme expression from type 3 (DIO3) to type 2 (DIO2). This reciprocal switch is considered to be mediated by increasing thyroid-stimulating hormone β (TSHβ) release from the pars tuberalis, which occurs in response to a change in photoperiod. Although well characterised in a handful of model organisms in controlled laboratory settings, this pathway remains largely unexplored in free-living animals under natural environmental conditions. In this comparative gene expression study, we investigated hypothalamic thyroid hormone signalling in two seasonally breeding subspecies of white-crowned sparrow (Zonotrichia leucophrys), across the entirety of their annual cycles. The migratory Gambel's (Z. l. gambelii) and resident Nuttall's (Z. l. nuttalii) subspecies differ with respect to timing of reproduction, as well as life history stage and migratory strategies. Although DIO3 mRNA expression was elevated and DIO2 mRNA expression was reduced in the wintering period in both subspecies, DIO2 peaked in both subspecies prior to the onset of reproduction. However, there was differential timing between subspecies in peak DIO2 expression. Intriguingly, seasonal modulation of TSHβ mRNA was only observed in migrants, where expression was elevated at the start of breeding, consistent with observations from other highly photoperiodic species. There was no correlation between TSHβ, DIO2 and gonadotropin-releasing hormone-I mRNA or reproductive metrics in residents. Based on these observed differences, we discuss potential implications for our understanding of how changes in medial basal hypothalamic gene expression mediates initiation of seasonal reproduction.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, AL, USA
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, CA, USA
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Jesse S Krause
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, CA, USA
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Valerie R Bishop
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Angus M A Reid
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Michael Sia
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, CA, USA
| | - Simone L Meddle
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
25
|
Dantas MRT, Souza-Junior JBF, Castelo TDS, Lago AEDA, Silva AR. Understanding how environmental factors influence reproductive aspects of wild myomorphic and hystricomorphic rodents. Anim Reprod 2021; 18:e20200213. [PMID: 33936293 PMCID: PMC8078862 DOI: 10.1590/1984-3143-ar2020-0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myomorphic and hystricomorphic rodents are vital for maintaining various ecosystems around the planet. This review enables a better understanding of how these rodents respond to environmental factors and adapt to climate adversities. Innumerable factors, such as photoperiod, rainfall, and temperature, can impair or contribute to the quality of rodent reproductive parameters. Prolonged animal exposure to high ambient temperatures alters thermoregulation mechanisms and causes testicular and ovarian tissue degeneration and hormonal deregulation. Photoperiod influences the biological circannual rhythm and reproductive cycles of rodents because it strongly regulates melatonin secretion by the pineal gland, which modulates gonadotropic hormone secretion. Rainfall quantity directly regulates the abundance of fruits in an ecosystem, which modulates the reproductive seasonality of species which are most dependent on a seasonal fruit-based diet. Species with a more diversified fruit diet have smaller reproductive seasonality. As such, habitats are chosen by animals for various reasons, including the availability of food, sexual partners, intra-and inter-specific competition, and predation. This knowledge allows us to monitor and establish management plans to aid in conservation strategies for wild rodent species.
Collapse
Affiliation(s)
- Maiko Roberto Tavares Dantas
- Laboratório de Conservação de Germoplasma Animal, Universidade Federal Rural do Semi-Árido - UFERSA, Mossoró, RN, Brasil
| | | | - Thibério de Souza Castelo
- Laboratório de Biometeorologia e Biofísica Ambiental, Universidade Federal Rural do Semi-Árido - UFERSA, Mossoró, RN, Brasil
| | - Arthur Emannuel de Araújo Lago
- Laboratório de Conservação de Germoplasma Animal, Universidade Federal Rural do Semi-Árido - UFERSA, Mossoró, RN, Brasil
| | - Alexandre Rodrigues Silva
- Laboratório de Conservação de Germoplasma Animal, Universidade Federal Rural do Semi-Árido - UFERSA, Mossoró, RN, Brasil
| |
Collapse
|
26
|
Validation of Reference Genes via qRT-PCR in Multiple Conditions in Brandt's Voles, Lasiopodomys brandtii. Animals (Basel) 2021; 11:ani11030897. [PMID: 33801053 PMCID: PMC8004067 DOI: 10.3390/ani11030897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary This study validated the stability of the expression profiles of nine common candidate reference genes (Gapdh, Hprt1, β-actin, PPIA, Rpl13a, Tbp, Sdha, Hmbs, and B2M) using qRT-PCR in different tissues, developmental stages, and photoperiods. None of these genes were suitable as optimal reference genes at 4 weeks postnatal in different tissues. Under different developmental stages in the hypothalamus, B2M for males and Rpl13a for females were suitable as reference genes. Under different photoperiods in the hypothalamus, none of the selected genes were suitable as reference genes at 6 weeks postnatal, β-actin and PPIA were the optimal reference genes at 12 weeks postnatal, while Hprt1, β-actin, PPIA, Hmbs, and B2M were excellent reference genes at 24 weeks postnatal. Abstract The choice of optimal reference gene is challenging owing to the varied expression of reference genes in different organs, development stages, and experimental treatments. Brandt’s vole (Lasiopodomys brandtii) is an ideal animal to explore the regulatory mechanism of seasonal breeding, and many studies on this vole involve gene expression analysis using quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we used the method of the coefficient of variation and the NormFinder algorithm to evaluate the performance of nine commonly used reference genes Gapdh, Hprt1, β-actin, PPIA, Rpl13a, Tbp, Sdha, Hmbs, and B2M using qRT-PCR in eight different tissues, five developmental stages, and three different photoperiods. We found that all nine genes were not uniformly expressed among different tissues. B2M and Rpl13a were the optimal reference genes for different postnatal development stages in the hypothalamus for males and females, respectively. Under different photoperiods in the hypothalamus, none of the selected genes were suitable as reference genes at 6 weeks postnatal; β-actin and PPIA were the optimal reference genes at 12 weeks postnatal; Hprt1, β-actin, PPIA, Hmbs, and B2M were excellent reference genes at 24 weeks postnatal. The present study provides a useful basis for selecting the appropriate reference gene in Lasiopodomys brandtii.
Collapse
|
27
|
van Rosmalen L, van Dalum J, Hazlerigg DG, Hut RA. Gonads or body? Differences in gonadal and somatic photoperiodic growth response in two vole species. J Exp Biol 2020; 223:jeb230987. [PMID: 32917818 DOI: 10.1242/jeb.230987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023]
Abstract
To optimally time reproduction, seasonal mammals use a photoperiodic neuroendocrine system (PNES) that measures photoperiod and subsequently drives reproduction. To adapt to late spring arrival at northern latitudes, a lower photoperiodic sensitivity and therefore a higher critical photoperiod for reproductive onset is necessary in northern species to arrest reproductive development until spring onset. Temperature-photoperiod relationships, and hence food availability-photoperiod relationships, are highly latitude dependent. Therefore, we predict PNES sensitivity characteristics to be latitude dependent. Here, we investigated photoperiodic responses at different times during development in northern (tundra or root vole, Microtus oeconomus) and southern vole species (common vole, Microtus arvalis) exposed to constant short (SP) or long photoperiod (LP). Although the tundra vole grows faster under LP, no photoperiodic effect on somatic growth is observed in the common vole. In contrast, gonadal growth is more sensitive to photoperiod in the common vole, suggesting that photoperiodic responses in somatic and gonadal growth can be plastic, and might be regulated through different mechanisms. In both species, thyroid-stimulating hormone β-subunit (Tshβ) and iodothyronine deiodinase 2 (Dio2) expression is highly increased under LP, whereas Tshr and Dio3 decrease under LP. High Tshr levels in voles raised under SP may lead to increased sensitivity to increasing photoperiods later in life. The higher photoperiodic-induced Tshr response in tundra voles suggests that the northern vole species might be more sensitive to thyroid-stimulating hormone when raised under SP. In conclusion, species differences in developmental programming of the PNES, which is dependent on photoperiod early in development, may form different breeding strategies as part of latitudinal adaptation.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jayme van Dalum
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, NO-9037 Tromsø, Norway
| | - David G Hazlerigg
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
28
|
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res 2020; 99:294-308. [PMID: 32128870 DOI: 10.1002/jnr.24606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.
Collapse
Affiliation(s)
- Alexandra M Yaw
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Thu V Duong
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|