1
|
Magura T, Mizser S, Horváth R, Tóth M, Lövei GL. Urbanization impoverishes taxonomic but not functional diversity of the gut microbiota in a forest specialist ground beetle, Carabus convexus. Sci Rep 2024; 14:25546. [PMID: 39461984 PMCID: PMC11513054 DOI: 10.1038/s41598-024-75864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Symbiotic microorganisms living in the digestive tracts of invertebrates can be crucial in host-symbiont interactions, as they play fundamental roles in important biological processes. Urbanization-related habitat alteration and disturbance, however, considerably affect the environment of host insects, from which their gut microbiota is derived. Still, relatively few studies, all on flying insects, have assessed the impact of urbanization on the gut microbiota of insects. Here, we compared the gut bacterial microbiota in rural and urban individuals of a flightless ground beetle, Carabus convexus, using next generation sequencing. Across the 48 gut samples we identified 1163 different bacterial operational taxonomic units (OTUs), forming significantly different gut bacterial communities in rural versus urban beetles. The taxonomic diversity of the gut bacterial microbiota expressed by the Hill numbers was significantly higher in rural than urban individuals, as well as in rural males vs. females. Smaller differences were found in functional diversity, assessed by the Rao's quadratic entropy which was marginally significantly higher in urban than rural beetles.
Collapse
Affiliation(s)
- Tibor Magura
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary.
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary.
| | - Szabolcs Mizser
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary
| | - Roland Horváth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary
| | - Mária Tóth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary
| | - Gábor L Lövei
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, 4200, Slagelse, Denmark
| |
Collapse
|
2
|
Zhu F, Sun K, Zhang H, Lu J, Guo P, Zhang J, Xu Y, Lyu B. Comparative Analyses of Lycodon rufozonatus and Lycodon rosozonatus Gut Microbiota in Different Regions. Ecol Evol 2024; 14:e70480. [PMID: 39440211 PMCID: PMC11495892 DOI: 10.1002/ece3.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The interactions between hosts and the gut microbiota are intricate and can significantly affect the ecology and evolution of both parties. Various host traits, including taxonomy, diet, social behaviour, and external factors such as prey availability and the local environment, all play an important role in shaping composition and diversity of the gut microbiogta. In this study, we explored the impact of intestinal microorganisms on the host in adapting to their respective ecological niches in two species of snakes. We collected feces from Lycodon rufozonatus and Lycodon rosozonatus from different geographical locations and used 16S rRNA gene sequencing technology to sequence the v3-v4 region. The results revealed that there was no significant difference in the alpha diversity of intestinal microorganisms between L. rufozonatus and L. rosozonatus. The gut microbiota of all individuals comprised four main phyla: Pseudomonadota, Bacteroidota, Bacillota, and Actinomycetota. At the genus level, the genus Salmonella dominated the enterobacterial microbiota in the samples from Hainan, while there was no obvious dominant genus in the enterobacterial microbiota of the samples from the other four localities. Comparative analysis of enzyme families annotated to the gut microbiota between L. rufozonatus and L. rosozonatus from the four sampling regions by CAZy carbohydrate annotation revealed that nine enzyme families differed significantly in terms of glycoside hydrolases (GHs). In addition, we compared the composition of gut microbial communities between L. rufozonatus and L. rosozonatus and investigated the impact of the differences on their functions. Our results will provide insights into the coevolution of host and gut microbes.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Ke Sun
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - He Zhang
- Guizhou Academy of ForestryGuiyangGuizhouChina
| | - Jing Lu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Jiaqi Zhang
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Bing Lyu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| |
Collapse
|
3
|
Zhu W, Chang L, Zhang M, Chen Q, Sui L, Shen C, Jiang J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024; 27:109907. [PMID: 38812552 PMCID: PMC11135016 DOI: 10.1016/j.isci.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Mistrick J, Kipp EJ, Weinberg SI, Adams CC, Larsen PA, Craft ME. Microbiome diversity and zoonotic bacterial pathogen prevalence in Peromyscus mice from agricultural landscapes and synanthropic habitat. Mol Ecol 2024; 33:e17309. [PMID: 38429967 DOI: 10.1111/mec.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly, anthropogenic land-use change has been found to increase the abundance of rodents that thrive in human-built environments (synanthropic rodents), particularly rodent reservoirs of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health and potentially introducing novel pathogens. Our objective was to examine the effect of agricultural development and synanthropic habitat on microbiome diversity and the prevalence of zoonotic bacterial pathogens in wild Peromyscus mice to better understand the role of these rodents in pathogen maintenance and transmission. We conducted 16S amplicon sequencing on faecal samples using long-read nanopore sequencing technology to characterize the rodent microbiome. We compared microbiome diversity and composition between forest and synanthropic habitats in agricultural and undeveloped landscapes and screened for putative pathogenic bacteria. Microbiome richness, diversity, and evenness were higher in the agricultural landscape and synanthropic habitat compared to undeveloped-forest habitat. Microbiome composition also differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitats. We detected overall low diversity and abundance of putative pathogenic bacteria, though putative pathogens were more likely to be found in mice from the agricultural landscape. Our findings show that landscape- and habitat-level anthropogenic factors affect Peromyscus microbiomes and suggest that landscape-level agricultural development may be important to predict zoonotic pathogen prevalence. Ultimately, understanding how anthropogenic land-use change and synanthropy affect rodent microbiomes and pathogen prevalence is important to managing transmission of rodent-borne zoonotic diseases to humans.
Collapse
Affiliation(s)
- Janine Mistrick
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Sarah I Weinberg
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Collin C Adams
- Itasca Biological Station and Laboratories, University of Minnesota, Lake Itasca, Minnesota, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Meggan E Craft
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Magura T, Mizser S, Horváth R, Tóth M, Likó I, Lövei GL. Urbanization reduces gut bacterial microbiome diversity in a specialist ground beetle, Carabus convexus. Mol Ecol 2024; 33:e17265. [PMID: 38214370 DOI: 10.1111/mec.17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Urbanization is rapidly shaping and transforming natural environments, creating networks of modified land types. These urbanization-driven modifications lead to local extinctions of several species, but the surviving ones also face numerous novel selection pressures, including exposure to pollutants, habitat alteration, and shifts in food availability and diversity. Based on the assumption that the environmental pool of microorganisms is reduced in urban habitats due to habitat alteration, biodiversity loss, and pollution, we hypothesized that the diversity of bacterial microbiome in digestive tracts of arthropods would be lower in urban than rural habitats. Investigating the gut bacterial communities of a specialist ground beetle, Carabus convexus, in forested rural versus urban habitats by next generation high-throughput sequencing of the bacterial 16S rRNA gene, we identified 3839 bacterial amplicon sequence variants. The composition of gut bacterial samples did not significantly differ by habitat (rural vs. urban), sex (female vs. male), sampling date (early vs. late spring), or their interaction. The microbiome diversity (evaluated by the Rényi diversity function), however, was higher in rural than urban adults. Our findings demonstrate that urbanization significantly reduced the diversity of the gut bacterial microbiome in C. convexus.
Collapse
Affiliation(s)
- Tibor Magura
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
| | - Szabolcs Mizser
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Roland Horváth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
| | - Mária Tóth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
| | - István Likó
- UD-GenoMed Medical Genomic Technologies Ltd, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Gábor L Lövei
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Slagelse, Denmark
| |
Collapse
|
6
|
Chalifour BN, Elder LE, Li J. Diversity of gut microbiome in Rocky Mountainsnail across its native range. PLoS One 2023; 18:e0290292. [PMID: 38011083 PMCID: PMC10681204 DOI: 10.1371/journal.pone.0290292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/07/2023] [Indexed: 11/29/2023] Open
Abstract
The animal gut microbiome is often a key requirement for host nutrition, digestion, and immunity, and can shift in relation to host geography and environmental factors. However, ecological drivers of microbiome community assembly across large geographic ranges have rarely been examined in invertebrates. Oreohelix strigosa (Rocky Mountainsnail) is a widespread land snail found in heterogeneous environments across the mountainous western United States. It is ideally suited for biogeography studies due to its broad distribution, low migration, and low likelihood of passive transport via other animals. This study aims to uncover large-scale geographic shifts in the composition of O. strigosa gut microbiomes by using 16S rRNA gene sequencing on samples from across its native range. Additionally, we elucidate smaller-scale microbiome variation using samples collected only within Colorado. Results show that gut microbiomes vary significantly across broad geographic ranges. Several possible ecological drivers, including soil and vegetation composition, habitat complexity, habitat type, and human impact, collectively explained 27% of the variation across Coloradan O. strigosa gut microbiomes. Snail gut microbiomes show more similarity to vegetation than soil microbiomes. Gut microbial richness was highest in the rocky habitats and increased significantly in the most disturbed habitats (low complexity, high human impact), potentially indicating signs of dysbiosis in the snails' gut microbiomes. These small-scale environmental factors may be driving changes in O. strigosa gut microbiome composition seen across large-scale geography. This knowledge will also help us better understand how microbial associations influence species survival in diverse environments and aid wildlife conservation efforts.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Leanne E. Elder
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
7
|
Solomon G, Love AC, Vaziri GJ, Harvey J, Verrett T, Chernicky K, Simons S, Albert L, Chaves JA, Knutie SA. Effect of urbanization and parasitism on the gut microbiota of Darwin's finch nestlings. Mol Ecol 2023; 32:6059-6069. [PMID: 37837269 DOI: 10.1111/mec.17164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.
Collapse
Affiliation(s)
- Gabrielle Solomon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Ashley C Love
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Johanna Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Taylor Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Kiley Chernicky
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Shelby Simons
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Puerto Baquerizo Moreno, Galapagos, Ecuador
- Department of Biology, San Francisco State University, California, San Francisco, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Institute for Systems Genomics, University of Connecticut, Connecticut, Storrs, USA
| |
Collapse
|
8
|
Gao W, Yang Y, Shi L. Seasonal dietary shifts alter the gut microbiota of a frugivorous lizard Teratoscincus roborowskii (Squamata, Sphaerodactylidae). Ecol Evol 2023; 13:e10363. [PMID: 37546566 PMCID: PMC10396791 DOI: 10.1002/ece3.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Seasonal dietary shifts in animals are important strategies for ecological adaptation. An increasing number of studies have shown that seasonal dietary shifts can influence or even determine the composition of gut microbiota. The Turpan wonder gecko, Teratoscincus roborowskii, lives in extreme desert environments and has a flexible dietary shift to fruit-eating in warm seasons. However, the effect of such shifts on the gut microbiota is poorly understood. In this study, 16S rRNA sequencing and LC-MS metabolomics were used to examine changes in the gut microbiota composition and metabolic patterns of T. roborowskii. The results demonstrated that the gut microbes of T. roborowskii underwent significant seasonal changes, and the abundance of phylum level in autumn was significantly higher than spring, but meanwhile, the diversity was lower. At the family level, the abundance and diversity of the gut microbiota were both higher in autumn. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant gut microbes of T. roborowskii. Verrucomicrobia and Proteobacteria exhibited dynamic ebb and flow patterns between spring and autumn. Metabolomic profiling also revealed differences mainly related to the formation of secondary bile acids. The pantothenate and CoA biosynthesis, and lysine degradation pathways identified by KEGG enrichment symbolize the exuberant metabolic capacity of T. roborowskii. Furthermore, strong correlations were detected between metabolite types and bacteria, and this correlation may be an important adaptation of T. roborowskii to cope with dietary shifts and improve energy acquisition. Our study provides a theoretical basis for exploring the adaptive evolution of the special frugivorous behavior of T. roborowskii, which is an important progress in the study of gut microbes in desert lizards.
Collapse
Affiliation(s)
- Wei‐Zhen Gao
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Yi Yang
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Lei Shi
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| |
Collapse
|
9
|
Alemany I, Pérez-Cembranos A, Pérez-Mellado V, Castro JA, Picornell A, Ramon C, Jurado-Rivera JA. Faecal Microbiota Divergence in Allopatric Populations of Podarcis lilfordi and P. pityusensis, Two Lizard Species Endemic to the Balearic Islands. MICROBIAL ECOLOGY 2023; 85:1564-1577. [PMID: 35482107 PMCID: PMC10167182 DOI: 10.1007/s00248-022-02019-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/19/2022] [Indexed: 05/10/2023]
Abstract
Gut microbial communities provide essential functions to their hosts and are known to influence both their ecology and evolution. However, our knowledge of these complex associations is still very limited in reptiles. Here we report the 16S rRNA gene faecal microbiota profiles of two lizard species endemic to the Balearic archipelago (Podarcis lilfordi and P. pityusensis), encompassing their allopatric range of distribution through a noninvasive sampling, as an alternative to previous studies that implied killing specimens of these IUCN endangered and near-threatened species, respectively. Both lizard species showed a faecal microbiome composition consistent with their omnivorous trophic ecology, with a high representation of cellulolytic bacteria taxa. We also identified species-specific core microbiota signatures and retrieved lizard species, islet ascription, and seasonality as the main factors in explaining bacterial community composition. The different Balearic Podarcis populations are characterised by harbouring a high proportion of unique bacterial taxa, thus reinforcing their view as unique and divergent evolutionary entities.
Collapse
Affiliation(s)
- Iris Alemany
- Department of Biology, University of the Balearic Islands, Ctra., Valldemossa km 7'5, 07122, Palma, Balearic Islands, Spain
| | | | | | - José A Castro
- Department of Biology, University of the Balearic Islands, Ctra., Valldemossa km 7'5, 07122, Palma, Balearic Islands, Spain
| | - Antonia Picornell
- Department of Biology, University of the Balearic Islands, Ctra., Valldemossa km 7'5, 07122, Palma, Balearic Islands, Spain
| | - Cori Ramon
- Department of Biology, University of the Balearic Islands, Ctra., Valldemossa km 7'5, 07122, Palma, Balearic Islands, Spain
| | - José A Jurado-Rivera
- Department of Biology, University of the Balearic Islands, Ctra., Valldemossa km 7'5, 07122, Palma, Balearic Islands, Spain.
| |
Collapse
|
10
|
Lan LY, Hong QX, Gao SM, Li Q, You YY, Chen W, Fan PF. Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habitats and in captivity: Implications for gibbon health. Am J Primatol 2023; 85:e23468. [PMID: 36691713 DOI: 10.1002/ajp.23468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
The gut microbiota plays an integral role in the metabolism and immunity of animal hosts, and provides insights into the health and habitat assessment of threatened animals. The skywalker hoolock gibbon (Hoolock tianxing) is a newly described gibbon species, and is considered an endangered species. Here, we used 16S rRNA amplicon sequencing to describe the fecal bacterial community of skywalker hoolock gibbons from different habitats and in captivity. Fecal samples (n = 5) from two captive gibbons were compared with wild populations (N = 6 gibbons, n = 33 samples). At the phylum level, Spirochetes, Proteobacteria, Firmicutes, Bacteroidetes dominated in captive gibbons, while Firmicutes, Bacteroidetes, and Tenericutes dominated in wild gibbons. At the genus level, captive gibbons were dominated by Treponema-2, followed by Succinivibrio and Cerasicoccus, while wild gibbons were dominated by Anaeroplasma, Prevotellaceae UCG-001, and Erysipelotrichaceae UCG-004. Captive rearing was significantly associated with lower taxonomic alpha-diversity, and different relative abundance of some dominant bacteria compared to wild gibbons. Predicted Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that captive gibbons have significantly lower total pathway diversity and higher relative abundance of bacterial functions involved in "drug resistance: antimicrobial" and "carbohydrate metabolism" than wild gibbons. This study reveals the potential influence of captivity and habitat on the gut bacterial community of gibbons and provides a basis for guiding the conservation management of captive populations.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Xuan Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Yan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Diaz J, Redford KH, Reese AT. Captive and urban environments are associated with distinct gut microbiota in deer mice ( Peromyscus maniculatus). Biol Lett 2023; 19:20220547. [PMID: 36883780 PMCID: PMC9994099 DOI: 10.1098/rsbl.2022.0547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Animals in captive and urban environments encounter evolutionarily novel conditions shaped by humans, such as altered diets, exposure to human-associated bacteria, and, potentially, medical interventions. Captive and urban environments have been demonstrated to affect gut microbial composition and diversity independently but have not yet been studied together. By sequencing the gut microbiota of deer mice living in laboratory, zoo, urban and natural settings, we sought to identify (i) whether captive deer mouse gut microbiota have similar composition regardless of husbandry conditions and (ii) whether captive and urban deer mice have similar gut microbial composition. We found that the gut microbiota of captive deer mice were distinct from those of free-living deer mice, indicating captivity has a consistent effect on the deer mouse microbiota regardless of location, lineage or husbandry conditions for a population. Additionally, the gut microbial composition, diversity and bacterial load of free-living urban mice were distinct from those of all other environment types. Together, these results indicate that gut microbiota associated with captivity and urbanization are likely not a shared response to increased exposure to humans but rather are shaped by environmental features intrinsic to captive and urban conditions.
Collapse
Affiliation(s)
- Jessica Diaz
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kent H Redford
- Archipelago Consulting, Portland, ME 04112, USA.,School of Marine and Environmental Programs, University of New England, Biddeford, ME 2350, USA
| | - Aspen T Reese
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Holmes IA, Grundler MC. Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic heterozygosity in a genetically diverse reptile community. Mol Ecol 2023; 32:258-274. [PMID: 36221927 PMCID: PMC9797449 DOI: 10.1111/mec.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.
Collapse
Affiliation(s)
- Iris A. Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Cornell Institute of Host Microbe Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Michael C. Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
13
|
Vasconcelos DS, Harris DJ, Damas-Moreira I, Pereira A, Xavier R. Factors shaping the gut microbiome of five species of lizards from different habitats. PeerJ 2023; 11:e15146. [PMID: 37187519 PMCID: PMC10178224 DOI: 10.7717/peerj.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Background Host-gut microbiota interactions are complex and can have a profound impact on the ecology and evolution of both counterparts. Several host traits such as systematics, diet and social behavior, and external factors such as prey availability and local environment are known to influence the composition and diversity of the gut microbiota. Methods In this study, we investigate the influence of systematics, sex, host size, and locality/habitat on gut microbiota diversity in five lizard species from two different sites in Portugal: Podarcis bocagei and Podarcis lusitanicus, living in syntopy in a rural area in northern Portugal (Moledo); the invasive Podarcis siculus and the native Podarcis virescens, living in sympatry in an urbanized environment (Lisbon); and the invasive Teira dugesii also living in an urban area (Lisbon). We also infer the potential microbial transmission occurring between species living in sympatry and syntopy. To achieve these goals, we use a metabarcoding approach to characterize the bacterial communities from the cloaca of lizards, sequencing the V4 region of the 16S rRNA. Results Habitat/locality was an important factor explaining differences in gut bacterial composition and structure, with species from urbanized environments having higher bacterial diversity. Host systematics (i.e., species) influenced gut bacterial community structure only in lizards from the urbanized environment. We also detected a significant positive correlation between lizard size and gut bacterial alpha-diversity in the invasive species P. siculus, which could be due to its higher exploratory behavior. Moreover, estimates of bacterial transmission indicate that P. siculus may have acquired a high proportion of local microbiota after its introduction. These findings confirm that a diverse array of host and environmental factors can influence lizards' gut microbiota.
Collapse
Affiliation(s)
- Diana S. Vasconcelos
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - D. James Harris
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | | | - Ana Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - Raquel Xavier
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| |
Collapse
|
14
|
Berlow M, Wada H, Derryberry EP. Experimental Exposure to Noise Alters Gut Microbiota in a Captive Songbird. MICROBIAL ECOLOGY 2022; 84:1264-1277. [PMID: 34783872 DOI: 10.1007/s00248-021-01924-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Noise pollution is an unprecedented evolutionary pressure on wild animals that can lead to alteration of stress hormone levels and changes in foraging behavior. Both corticosterone and feeding behavior can have direct effects on gut bacteria, as well as indirect effects through changes in gut physiology. Therefore, we hypothesized that exposure to noise will alter gut microbial communities via indirect effects on glucocorticoids and foraging behaviors. We exposed captive white-crowned sparrows to city-like noise and measured each individuals' corticosterone level, food intake, and gut microbial diversity at the end of four treatments (acclimation, noise, recovery, and control) using a balanced repeated measures design. We found evidence that noise acts to increase corticosterone and decrease food intake, adding to a growing body of research indicating noise exposure affects stress hormone levels and foraging behaviors. We also found evidence to support our prediction for a causal, positive relationship between noise exposure and gut microbial diversity, such that birds had higher measures of alpha diversity during noise exposure. These results help to explain previous findings that urban, free-living white-crowned sparrows have higher bacterial richness than rural sparrows. However, noise appeared to act directly on the gut microbiome or, more likely, through an unmeasured variable, rather than through indirect effects via corticosterone and food intake. Altogether, our study indicates that noise affects plasma corticosterone, feeding behavior, and the gut microbiome in a songbird and raises new questions as to the mechanism linking noise exposure to gut microbial diversity.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA.
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
15
|
Eliades SJ, Colston TJ, Siler CD. Gut microbial ecology of Philippine gekkonids: ecoevolutionary effects on microbiome compositions. FEMS Microbiol Ecol 2022; 98:6763418. [PMID: 36259773 PMCID: PMC9681010 DOI: 10.1093/femsec/fiac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Given the rapidly changing landscapes of habitats across the globe, a sound understanding of host-associated microbial communities and the ecoevolutionary forces that shape them is needed to assess general organismal adaptability. Knowledge of the symbiotic endogenous microbiomes of most reptilian species worldwide remains limited. We sampled gut microbiomes of geckos spanning nine species and four genera in the Philippines to (i) provide baseline data on gut microbiota in these host species, (ii) test for significant associations between host phylogenetic relationships and observed microbial assemblages, potentially indicative of phylosymbiosis, and (iii) identify correlations between multiple ecoevolutionary factors (e.g. species identity, habitat tendencies, range extents, and maximum body sizes) and gut microbiomes in Philippine gekkonids. We recovered no significant association between interspecific host genetic distances and observed gut microbiomes, providing limited evidence for phylosymbiosis in this group. Philippine gekkonid microbiomes were associated most heavily with host species identity, though marked variation among conspecifics at distinct sampling sites indicates that host locality influences gut microbiomes as well. Interestingly, individuals grouped as widespread and microendemic regardless of host species identity displayed significant differences in alpha and beta diversity metrics examined, likely driven by differences in rare OTU presence between groups. These results provide much needed insight in host-associated microbiomes in wild reptiles and the ecoevolutionary forces that structure such communities.
Collapse
Affiliation(s)
- Samuel J Eliades
- Corresponding author: 2401 Chautauqua Avenue, Norman, OK 73072, United States. E-mail:
| | - Timothy J Colston
- Biology Department, University of Puerto Rico at Mayagüez, Call Box 9000, 00681-9000 Mayagüez, Puerto Rico
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, United States
| |
Collapse
|
16
|
Jackson N, Littleford-Colquhoun BL, Strickland K, Class B, Frere CH. Selection in the city: Rapid and fine-scale evolution of urban eastern water dragons. Evolution 2022; 76:2302-2314. [PMID: 35971751 DOI: 10.1111/evo.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023]
Abstract
Oceanic archipelagos have long been treated as a Petri dish for studies of evolutionary and ecological processes. Like archipelagos, cities exhibit similar patterns and processes, such as the rapid phenotypic divergence of a species between urban and nonurban environments. However, on a local scale, cities can be highly heterogenous, where geographically close populations can experience dramatically different environmental conditions. Nevertheless, we are yet to understand the evolutionary and ecological implications for populations spread across a heterogenous cityscape. To address this, we compared neutral genetic divergence to quantitative trait divergence within three native riparian and four city park populations of an iconic urban adapter, the eastern water dragon. We demonstrated that selection is likely acting to drive divergence of snout-vent length and jaw width across native riparian populations that are geographically isolated and across city park populations that are geographically close yet isolated by urbanization. City park populations as close as 0.9 km exhibited signs of selection-driven divergence to the same extent as native riparian populations isolated by up to 114.5 km. These findings suggest that local adaptation may be occurring over exceptionally small geographic and temporal scales within a single metropolis, demonstrating that city parks can act as archipelagos for the study of rapid evolution.
Collapse
Affiliation(s)
- Nicola Jackson
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Bethan L Littleford-Colquhoun
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, 02912, US.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, 02912, US
| | - Kasha Strickland
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,Department of Aquaculture and Fish Biology, Hólar University, Sauðarkrókur, 550, Iceland
| | - Barbara Class
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Celine H Frere
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
17
|
Anders JL, Mychajliw AM, Moustafa MAM, Mohamed WMA, Hayakawa T, Nakao R, Koizumi I. Dietary niche breadth influences the effects of urbanization on the gut microbiota of sympatric rodents. Ecol Evol 2022; 12:e9216. [PMID: 36177145 PMCID: PMC9463044 DOI: 10.1002/ece3.9216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Cities are among the most extreme forms of anthropogenic ecosystem modification, and urbanization processes exert profound effects on animal populations through multiple ecological pathways. Increased access to human-associated food items may alter species' foraging behavior and diet, in turn modifying the normal microbial community of the gastrointestinal tract (GIT), ultimately impacting their health. It is crucial we understand the role of dietary niche breadth and the resulting shift in the gut microbiota as urban animals navigate novel dietary resources. We combined stable isotope analysis of hair and microbiome analysis of four gut regions across the GIT to investigate the effects of urbanization on the diet and gut microbiota of two sympatric species of rodents with different dietary niches: the omnivorous large Japanese field mouse (Apodemus speciosus) and the relatively more herbivorous gray red-backed vole (Myodes rufocanus). Both species exhibited an expanded dietary niche width within the urban areas potentially attributable to novel anthropogenic foods and altered resource availability. We detected a dietary shift in which urban A. speciosus consumed more terrestrial animal protein and M. rufocanus more plant leaves and stems. Such changes in resource use may be associated with an altered gut microbial community structure. There was an increased abundance of the presumably probiotic Lactobacillus in the small intestine of urban A. speciosus and potentially pathogenic Helicobacter in the colon of M. rufocanus. Together, these results suggest that even taxonomically similar species may exhibit divergent responses to urbanization with consequences for the gut microbiota and broader ecological interactions.
Collapse
Affiliation(s)
- Jason L. Anders
- Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
- Department of Biosciences, Center for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
| | - Alexis M. Mychajliw
- Department of BiologyMiddlebury CollegeMiddleburyVermontUSA
- Department of Environmental StudiesMiddlebury CollegeMiddleburyVermontUSA
| | - Mohamed Abdallah Mohamed Moustafa
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Graduate School of Infectious DiseasesHokkaido UniversitySapporoJapan
- Department of Animal MedicineSouth Valley UniversityQenaEgypt
- Department of Microbiology, Biochemistry and Molecular GeneticsRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Wessam Mohamed Ahmed Mohamed
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Graduate School of Infectious DiseasesHokkaido UniversitySapporoJapan
| | - Takashi Hayakawa
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
- Japan Monkey CenterInuyamaJapan
| | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Graduate School of Infectious DiseasesHokkaido UniversitySapporoJapan
| | - Itsuro Koizumi
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
| |
Collapse
|
18
|
Brum PHR, Gonçalves SRA, Strüssmann C, Teixido AL. A global assessment of research on urban ecology of reptiles: patterns, gaps and future directions. Anim Conserv 2022. [DOI: 10.1111/acv.12799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- P. H. R. Brum
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Universidade Federal de Mato Grosso Cuiabá Brazil
| | - S. R. A. Gonçalves
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Universidade Federal de Mato Grosso Cuiabá Brazil
| | - C. Strüssmann
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Universidade Federal de Mato Grosso Cuiabá Brazil
- Faculdade de Medicina Veterinária Universidade Federal de Mato Grosso Cuiabá Brazil
| | - A. L. Teixido
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Universidade Federal de Mato Grosso Cuiabá Brazil
- Departamento de Botânica e Ecologia Universidade Federal de Mato Grosso Cuiabá Brazil
| |
Collapse
|
19
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
20
|
Lever D, Rush LV, Thorogood R, Gotanda KM. Darwin's small and medium ground finches might have taste preferences, but not for human foods. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211198. [PMID: 35116148 PMCID: PMC8790341 DOI: 10.1098/rsos.211198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Urbanization is rapidly changing ecological niches. On the inhabited Galapagos Islands, Darwin's finches consume human-introduced foods preferentially; however, it remains unclear why. Here, we presented pastry with flavour profiles typical of human foods (oily, salty and sweet) to small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis) to test if latent taste preferences might drive the selection of human foods. If human food flavours were consumed more than a neutral or bitter control only at sites with human foods, then we predicted tastes were acquired after urbanization; however, if no site differences were found then this would indicate latent taste preferences. Contrary to both predictions, we found little evidence that human food flavours were preferred compared with control flavours at any site. Instead, finches showed a weak aversion to oily foods, but only at remote (no human foods present) sites. This was further supported by behavioural responses, with beak-wiping occurring more often at remote sites after finches tasted flavours associated with human foods. Our results suggest, therefore, that while Darwin's finches regularly exposed to human foods might have acquired a tolerance to human food flavours, latent taste preferences are unlikely to have played a major role in their dietary response to increased urbanization.
Collapse
Affiliation(s)
- D. Lever
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - L. V. Rush
- Department of Geology, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario P3E 2C6, Canada
| | - R. Thorogood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Helsinki Institute of Life Science (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Research Program in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - K. M. Gotanda
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Départment de Biologie, Université de Sherbrooke, 2500, boul de l'Université, Sherbrooke, Québec J1K 2R1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharine's, Ontario L2S 3A1, Canada
| |
Collapse
|
21
|
Stothart MR, Newman AEM. Shades of grey: host phenotype dependent effect of urbanization on the bacterial microbiome of a wild mammal. Anim Microbiome 2021; 3:46. [PMID: 34225812 PMCID: PMC8256534 DOI: 10.1186/s42523-021-00105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Host-associated microbiota are integral to the ecology of their host and may help wildlife species cope with rapid environmental change. Urbanization is a globally replicated form of severe environmental change which we can leverage to better understand wildlife microbiomes. Does the colonization of separate cities result in parallel changes in the intestinal microbiome of wildlife, and if so, does within-city habitat heterogeneity matter? Using 16S rRNA gene amplicon sequencing, we quantified the effect of urbanization (across three cities) on the microbiome of eastern grey squirrels (Sciurus carolinensis). Grey squirrels are ubiquitous in rural and urban environments throughout their native range, across which they display an apparent coat colour polymorphism (agouti, black, intermediate). RESULTS Grey squirrel microbiomes differed between rural and city environments; however, comparable variation was explained by habitat heterogeneity within cities. Our analyses suggest that operational taxonomic unit (OTU) community structure was more strongly influenced by local environmental conditions (rural and city forests versus human built habitats) than urbanization of the broader landscape (city versus rural). The bacterial genera characterizing the microbiomes of built-environment squirrels are thought to specialize on host-derived products and have been linked in previous research to low fibre diets. However, despite an effect of urbanization at fine spatial scales, phylogenetic patterns in the microbiome were coat colour phenotype dependent. City and built-environment agouti squirrels displayed greater phylogenetic beta-dispersion than those in rural or forest environments, and null modelling results indicated that the phylogenetic structure of urban agouti squirrels did not differ greatly from stochastic expectations. CONCLUSIONS Squirrel microbiomes differed between city and rural environments, but differences of comparable magnitude were observed between land classes at a within-city scale. We did not observe strong evidence that inter-environmental differences were the result of disparate selective pressures. Rather, our results suggest that microbiota dispersal and ecological drift are integral to shaping the inter-environmental differences we observed. However, these processes were partly mediated by squirrel coat colour phenotype. Given a well-known urban cline in squirrel coat colour melanism, grey squirrels provide a useful free-living system with which to study how host genetics mediate environment x microbiome interactions.
Collapse
Affiliation(s)
- Mason R. Stothart
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, T2N 4Z6 Canada
| | - Amy E. M. Newman
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, N1G 2W1 Canada
| |
Collapse
|
22
|
Berlow M, Phillips JN, Derryberry EP. Effects of Urbanization and Landscape on Gut Microbiomes in White-Crowned Sparrows. MICROBIAL ECOLOGY 2021; 81:253-266. [PMID: 32803364 DOI: 10.1007/s00248-020-01569-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Habitats are changing rapidly around the globe and urbanization is one of the primary drivers. Urbanization changes food availability, environmental stressors, and the prevalence of disease for many species. These changes can lead to divergence in phenotypic traits, including behavioral, physiological, and morphological features between urban and rural populations. Recent research highlights that urbanization is also changing the gut microbial communities found in a diverse group of host species. These changes have not been uniform, leaving uncertainty as to how urban habitats are shaping gut microbial communities. To better understand these effects, we investigated the gut bacterial communities of White-Crowned Sparrow (Zonotrichia leucophrys) populations along an urbanization gradient in the San Francisco Bay area. We examined how gut bacterial communities vary with the local environment and host morphological characteristics. We found direct effects of environmental factors, including urban noise levels and territory land cover, as well as indirect effects through body size and condition, on alpha and beta diversity of gut microbial communities. We also found that urban and rural birds' microbiomes differed in which variables predicted their diversity, with urban communities driven by host morphology, and rural communities driven by environmental factors. Elucidating these effects provides a better understanding of how urbanization affects wild avian physiology.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA.
| | - Jennifer N Phillips
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
23
|
Baxter-Gilbert J, Riley JL, Frère CH, Whiting MJ. Shrinking into the big city: influence of genetic and environmental factors on urban dragon lizard morphology and performance capacity. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01065-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. The gut bacterial microbiota of sea turtles differs between geographically distinct populations. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The microbiota of metazoans can be influenced by a variety of factors including diet, environment and genetics. In this study we sampled multiple populations from 2 host species that do not overlap in distribution, in order to test whether their bacterial microbiotas are species-specific or more variable. Intestinal swabs were collected from loggerhead turtles originating from Florida, USA, and Queensland, Australia, as well as from flatback turtles from Crab Island, Queensland, and Port Hedland, Western Australia. We then manually extracted bacterial DNA and used 16S rRNA sequencing to explore bacterial microbial community composition and structure. Our investigation showed that the bacterial microbiota of sea turtles is heavily influenced by geography, with loggerhead turtles originating from the USA and Australia harbouring significantly different bacterial microbial populations in terms of composition. Similarly, we also found that flatback turtles from Crab Island had significantly less diverse microbiotas, with a predominance of the bacterial phylum Firmicutes, in comparison to their genetically similar counterparts from Port Hedland. Factors that may explain these observed differences between populations include host genetics, differences in foraging habitat quality and differences in migratory distance (and thus durations of inappetence) between foraging and breeding grounds. The mechanisms by which these factors may influence bacterial microbial composition of sea turtle gastrointestinal tracts warrants further investigation. The results of this study highlight the importance of interpreting microbiota data of wild animals in the context of geography.
Collapse
Affiliation(s)
- TF Scheelings
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| | - RJ Moore
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria 3083, Australia
| | - TTH Van
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria 3083, Australia
| | - M Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - RD Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: the gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim Microbiome 2020; 2:17. [PMID: 33499954 PMCID: PMC7807503 DOI: 10.1186/s42523-020-00034-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The microbiota plays a critical role in host homeostasis and has been shown to be a major driving force in host evolution. However, our understanding of these important relationships is hampered by a lack of data for many species, and by significant gaps in sampling of the evolutionary tree. In this investigation we improve our understanding of the host-microbiome relationship by obtaining samples from all seven extant species of sea turtle, and correlate microbial compositions with host evolutionary history. Results Our analysis shows that the predominate phyla in the microbiota of nesting sea turtles was Proteobacteria. We also demonstrate a strong relationship between the bacterial phyla SR1 and sea turtle phylogeny, and that sea turtle microbiotas have changed very slowly over time in accordance with their similarly slow phenotypic changes. Conclusions This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
Collapse
Affiliation(s)
| | - Robert J Moore
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Littleford-Colquhoun BL, Weyrich LS, Kent N, Frere CH. City life alters the gut microbiome and stable isotope profiling of the eastern water dragon (Intellagama lesueurii). Mol Ecol 2019; 28:4592-4607. [PMID: 31495003 DOI: 10.1111/mec.15240] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Urbanisation is one of the most significant threats to biodiversity, due to the rapid and large-scale environmental alterations it imposes on the natural landscape. It is, therefore, imperative that we understand the consequences of and mechanisms by which, species can respond to it. In recent years, research has shown that plasticity of the gut microbiome may be an important mechanism by which animals can adapt to environmental change, yet empirical evidence of this in wild non-model species remains sparse. Using an empirical replicated study system, we show that city life alters the gut microbiome and stable isotope profiling of a wild native non-model species - the eastern water dragon (Intellagama lesueurii) in Queensland, Australia. City dragons exhibit a more diverse gut microbiome than their native habitat counterparts and show gut microbial signatures of a high fat and plant rich diet. Additionally, we also show that city dragons have elevated levels of the Nitrogen-15 isotope in their blood suggesting that a city diet, which incorporates novel anthropogenic food sources, may also be richer in protein. These results highlight the role that gut microbial plasticity plays in an animals' response to human-altered landscapes.
Collapse
Affiliation(s)
- Bethan L Littleford-Colquhoun
- Global Change Ecology Research Group, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Laura S Weyrich
- Department of Genetics and Evolution, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia.,Centre for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
| | - Nicola Kent
- Global Change Ecology Research Group, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Celine H Frere
- Global Change Ecology Research Group, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| |
Collapse
|