1
|
Thayer RC, Patel NH. A meta-analysis of butterfly structural colors: their color range, distribution and biological production. J Exp Biol 2023; 226:jeb245940. [PMID: 37937662 DOI: 10.1242/jeb.245940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Butterfly scales are among the richest natural sources of optical nanostructures, which produce structural color and iridescence. Several recurring nanostructure types have been described, such as ridge multilayers, gyroids and lower lamina thin films. While the optical mechanisms of these nanostructure classes are known, their phylogenetic distributions and functional ranges have not been described in detail. In this Review, we examine a century of research on the biological production of structural colors, including their evolution, development and genetic regulation. We have also created a database of more than 300 optical nanostructures in butterflies and conducted a meta-analysis of the color range, abundance and phylogenetic distribution of each nanostructure class. Butterfly structural colors are ubiquitous in short wavelengths but extremely rare in long wavelengths, especially red. In particular, blue wavelengths (around 450 nm) occur in more clades and are produced by more kinds of nanostructures than other hues. Nanostructure categories differ in prevalence, phylogenetic distribution, color range and brightness. For example, lamina thin films are the least bright; perforated lumen multilayers occur most often but are almost entirely restricted to the family Lycaenidae; and 3D photonic crystals, including gyroids, have the narrowest wavelength range (from about 450 to 550 nm). We discuss the implications of these patterns in terms of nanostructure evolution, physical constraint and relationships to pigmentary color. Finally, we highlight opportunities for future research, such as analyses of subadult and Hesperid structural colors and the identification of genes that directly build the nanostructures, with relevance for biomimetic engineering.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Araki Y, Sota T. Whole-genome resequencing reveals recent divergence of geographic populations of the dung beetle Phelotrupes auratus with color variation. Ecol Evol 2023; 13:e9765. [PMID: 36713480 PMCID: PMC9873872 DOI: 10.1002/ece3.9765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Knowledge of population divergence history is key to understanding organism diversification mechanisms. The geotrupid dung beetle Phelotrupes auratus, which inhabits montane forests and exhibits three color forms (red, green, and indigo), diverged into five local populations (west/red, south/green, south/indigo, south/red, and east/red) in the Kinki District of Honshu, Japan, based on the combined interpretation of genetic cluster and color-form data. Here, we estimated the demographic histories of these local populations using the newly assembled draft genome sequence of P. auratus and whole-genome resequencing data obtained from each local population. Using coalescent simulation analysis, we estimated P. auratus population divergences at ca. 3800, 2100, 600, and 200 years ago, with no substantial gene flow between diverged populations, implying the existence of persistent barriers to gene flow. Notably, the last two divergence events led to three local populations with different color forms. The initial divergence may have been affected by climatic cooling around that time, and the last three divergence events may have been associated with the increasing impact of human activities. Both climatic cooling and increasing human activity may have caused habitat fragmentation and a reduction in the numbers of large mammals supplying food (dung) for P. auratus, thereby promoting the decline, segregation, and divergence of local populations. Our research demonstrates that geographic population divergence in an insect with conspicuous differences in traits such as body color may have occurred rapidly under the influence of human activity.
Collapse
Affiliation(s)
- Yoshifumi Araki
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Teiji Sota
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| |
Collapse
|
3
|
Brien MN, Enciso-Romero J, Lloyd VJ, Curran EV, Parnell AJ, Morochz C, Salazar PA, Rastas P, Zinn T, Nadeau NJ. The genetic basis of structural colour variation in mimetic
Heliconius
butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200505. [PMID: 35634924 PMCID: PMC9149798 DOI: 10.1098/rstb.2020.0505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Structural colours, produced by the reflection of light from ultrastructures, have evolved multiple times in butterflies. Unlike pigmentary colours and patterns, little is known about the genetic basis of these colours. Reflective structures on wing-scale ridges are responsible for iridescent structural colour in many butterflies, including the Müllerian mimics Heliconius erato and Heliconius melpomene. Here, we quantify aspects of scale ultrastructure variation and colour in crosses between iridescent and non-iridescent subspecies of both of these species and perform quantitative trait locus (QTL) mapping. We show that iridescent structural colour has a complex genetic basis in both species, with offspring from crosses having a wide variation in blue colour (both hue and brightness) and scale structure measurements. We detect two different genomic regions in each species that explain modest amounts of this variation, with a sex-linked QTL in H. erato but not H. melpomene. We also find differences between species in the relationships between structure and colour, overall suggesting that these species have followed different evolutionary trajectories in their evolution of structural colour. We then identify genes within the QTL intervals that are differentially expressed between subspecies and/or wing regions, revealing likely candidates for genes controlling structural colour formation. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Melanie N. Brien
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Juan Enciso-Romero
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Victoria J. Lloyd
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Emma V. Curran
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Andrew J. Parnell
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | - Patricio A. Salazar
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Pasi Rastas
- Institute of Biotechnology, 00014 University of Helsinki, Finland
| | - Thomas Zinn
- ESRF - The European Synchrotron, 38043 Grenoble Cedex 9, France
| | - Nicola J. Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Meier JI, Salazar PA, Kučka M, Davies RW, Dréau A, Aldás I, Box Power O, Nadeau NJ, Bridle JR, Rolian C, Barton NH, McMillan WO, Jiggins CD, Chan YF. Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proc Natl Acad Sci U S A 2021; 118:e2015005118. [PMID: 34155138 PMCID: PMC8237668 DOI: 10.1073/pnas.2015005118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic variation segregates as linked sets of variants or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. Yet, genomic data often omit haplotype information due to constraints in sequencing technologies. Here, we present "haplotagging," a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species, the geographic clines for the major wing-pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the center of the hybrid zone. We propose that shared warning signaling (Müllerian mimicry) may couple the cline shifts seen in both species and facilitate the parallel coemergence of a novel hybrid morph in both comimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations.
Collapse
Affiliation(s)
- Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- St. John's College, University of Cambridge, Cambridge CB2 1TP, United Kingdom
| | - Patricio A Salazar
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Marek Kučka
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | | | - Andreea Dréau
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | | | - Olivia Box Power
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jon R Bridle
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicholas H Barton
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panamá, Apartado Postal 0843-00153, República de Panamá
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom;
- Smithsonian Tropical Research Institute, Panamá, Apartado Postal 0843-00153, República de Panamá
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany;
| |
Collapse
|
5
|
Araki Y, Sota T. Population genetic structure underlying the geographic variation in beetle structural colour with multiple transition zones. Mol Ecol 2020; 30:670-684. [PMID: 33253446 DOI: 10.1111/mec.15758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
We studied the population genetic structure underlying the geographic variation in the structural colour of the geotrupid dung beetle, Phelotrupes auratus, which exhibits metallic body colours of different reflectance wavelengths perceived as red, green and indigo. These forms occur parapatrically in an area of Japan. The colour variation was not related to variation in climatic factors. Using single nucleotide polymorphisms (SNPs) from restriction-site-associated DNA sequences, we discriminated five groups of populations (west/red, south/green, south/indigo, south/red and east/red) by a combination of genetic clusters (west, south and east) and three colour forms. There were three transition zones for the colour forms: two between the red and green forms were hybrid zones with steep genetic clines, which implies the existence of barriers to gene flow between regions with different colours. The remaining transition zone between the green and indigo forms lacked genetic differentiation, despite the evident colour changes, which implies regionally specific selection on the different colours. In a genomewide association study, we identified four SNPs that were associated with the red/green or indigo colour and were not linked with one another, which implies that the coloration was controlled by multiple loci, each affecting the expression of a different colour range. These loci may have controlled the transitions between different combinations of colours. Our study demonstrates that geographic colour variation within a species can be maintained by nonuniform interactions among barriers to gene flow, locally specific selection on different colours, and the effects of different colour loci.
Collapse
Affiliation(s)
- Yoshifumi Araki
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|