1
|
Yu D, Zhou M, Chen W, Ding Z, Wang C, Qian Y, Liu Y, He S, Yang L. Characterization of transcriptome changes in saline stress adaptation on Leuciscus merzbacheri using PacBio Iso-Seq and RNA-Seq. DNA Res 2024; 31:dsae019. [PMID: 38807352 PMCID: PMC11161863 DOI: 10.1093/dnares/dsae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
Leuciscus merzbacheri is a native fish species found exclusively in the Junggar Basin in Xinjiang. It exhibits remarkable adaptability, thriving in varying water conditions such as the saline waters, the semi-saline water, and the freshwater. Despite its significant economic and ecological value, the underlying mechanisms of its remarkable salinity tolerance remain elusive. Our study marks the first time the full-length transcriptome of L. merzbacheri has been reported, utilizing RNA-Seq and PacBio Iso-Seq technologies. We found that the average length of the full-length transcriptome is 1,780 bp, with an N50 length of 2,358 bp. We collected RNA-Seq data from gill, liver, and kidney tissues of L. merzbacheri from both saline water and freshwater environments and conducted comparative analyses across these tissues. Further analysis revealed significant enrichment in several key functional gene categories and signalling pathways related to stress response and environmental adaptation. The findings provide a valuable genetic resource for further investigation into saline-responsive candidate genes, which will deepen our understanding of teleost adaptation to extreme environmental stress. This knowledge is crucial for the future breeding and conservation of native fish species.
Collapse
Affiliation(s)
- Dan Yu
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Zhou
- School of Life Sciences, Jianghan Universily, Wuhan 430056, China
| | - Wenjun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zufa Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
2
|
Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, Zhang X, Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience 2023; 26:107793. [PMID: 37731610 PMCID: PMC10507238 DOI: 10.1016/j.isci.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Ips nitidus is a well-known conifer pest that has contributed significantly to spruce forest disturbance in the Qinghai-Tibet Plateau and seriously threatens the ecological balance of these areas. We report a chromosome-level genome of I. nitidus determined by PacBio and Hi-C technology. Phylogenetic inference showed that it diverged from the common ancestor of I. typographus ∼2.27 mya. Gene family expansion in I. nitidus was characterized by DNA damage repair and energy metabolism, which may facilitate adaptation to high-altitude hypoxia. Interestingly, differential gene expression analysis revealed upregulated genes associated with high-altitude hypoxia adaptation and downregulated genes associated with detoxification after feeding and tunneling in fungal symbiont Ophiostoma bicolor-colonized substrates. Our findings provide evidence of the potential adaptability of I. nitidus to conifer host, high-altitude hypoxia and insight into how fungal symbiont assist in this process. This study enhances our understanding of insect adaptation, symbiosis, and pest management.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 00 Suchdol, Czech Republic
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | | | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
3
|
Zhao ZS, Yang LY, Li FX, Cun W, Wang XY, Cao CQ, Zhang QL. Gut flora alterations among aquatic firefly Aquatica leii inhabiting various dissolved oxygen in fresh water. iScience 2023; 26:107809. [PMID: 37744031 PMCID: PMC10514463 DOI: 10.1016/j.isci.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Knowledge about the impact of different dissolved oxygen (DO) on the composition and function of gut bacteria of aquatic insects is largely unknown. Herein, we constructed freshwater environments with different DOs (hypoxia: 2.50 ± 0.50, normoxia: 7.00 ± 0.50, and hyperoxia: 13.00 ± 0.50 mg/L) where aquatic firefly Aquatica leii larvae lived for three months. Their gut flora was analyzed using the combination of 16S rRNA amplicon sequencing and metagenomics. The results showed no difference in alpha diversity of the gut flora between A. leii inhabiting various DOs. However, the relative abundance of several bacterial lineages presented significant changes, such as Pseudomonas. In addition, bacterial genes with an altered relative abundance in response to various DOs were primarily related to metabolism. The alteration of these functions correlated with the DO change. This is the first to uncover structure of gut flora under various DOs in aquatic insect larvae.
Collapse
Affiliation(s)
- Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fu-Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Cun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xing-Yan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng-Quan Cao
- College of Life Sciences, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Yang L, Zhao Z, Luo D, Liang M, Zhang Q. Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects. INSECTS 2022; 13:823. [PMID: 36135524 PMCID: PMC9503472 DOI: 10.3390/insects13090823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Aquatic insects are well-adapted to freshwater environments, but metabolic mechanisms of such adaptations, particularly to primary environmental factors (e.g., hypoxia, water pressure, dark light, and abundant microbes), are poorly known. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of a few species are aquatic. We generated 24 global metabolomic profiles of larvae and adults of Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) to identify freshwater adaptation-related metabolites (AARMs). We identified 110 differentially abundant metabolites (DAMs) in A. leii (adults vs. aquatic larvae) and 183 DAMs in L. praetexta (adults vs. terrestrial larvae). Furthermore, 100 DAMs specific to aquatic A. leii larvae were screened as AARMs via interspecific comparisons (A. leii vs. L. praetexta), which were primarily involved in antioxidant activity, immune response, energy production and metabolism, and chitin biosynthesis. They were assigned to six categories/superclasses (e.g., lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compound). Finally, ten metabolic pathways shared between KEGG terms specific to aquatic fireflies and enriched by AARMs were screened as aquatic adaptation-related pathways (AARPs). These AARPs were primarily involved in energy metabolism, xenobiotic biodegradation, protection of oxidative/immune damage, oxidative stress response, and sense function (e.g., glycine, serine and threonine metabolism, drug metabolism-cytochrome P450, and taste transduction), and certain aspects of morphology (e.g., steroid hormone biosynthesis). These results provide evidence suggesting that abundance changes in metabolomes contribute to freshwater adaptation of fireflies. The metabolites identified here may be vital targets for future work to determine the mechanism of freshwater adaptation in insects.
Collapse
Affiliation(s)
- Linyu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zishun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- YEN, Chuxiong People’s Hospital, Chuxiong 675000, China
| | - Mingzhong Liang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Qilin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Chen SY, Li C, Luo Z, Li X, Jia X, Lai SJ. Favoring Expression of Yak Alleles in Interspecies F1 Hybrids of Cattle and Yak Under High-Altitude Environments. Front Vet Sci 2022; 9:892663. [PMID: 35847643 PMCID: PMC9280030 DOI: 10.3389/fvets.2022.892663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Both cis- and trans-regulation could cause differential expression between the parental alleles in diploid species that might have broad biological implications. Due to the relatively distant genetic divergence between cattle and yak, as well as their differential adaptation to high-altitude environments, we investigated genome-wide allelic differential expression (ADE) in their F1 hybrids using Nanopore long-read RNA-seq technology. From adult F1 hybrids raised in high-altitude, ten lung and liver tissues were individually sequenced for producing 31.6 M full-length transcript sequences. Mapping against autosomal homologous regions between cattle and yak, we detected 17,744 and 14,542 protein-encoding genes expressed in lung and liver tissues, respectively. According to the parental assignments of transcript sequences, a total of 3,381 genes were detected to show ADE in at least one sample. There were 186 genes showing ubiquitous ADE in all the studied animals, and among them 135 and 37 genes had consistent higher expression of yak and cattle alleles, respectively. Functional analyses revealed that the genes with favoring expression of yak alleles have been involved in the biological progresses related with hypoxia adaptation and immune response. In contrast, the genes with favoring expression of cattle alleles have been enriched into different biological progresses, such as secretion of endocrine hormones and lipid metabolism. Our results would support unequal contribution of parental genes to environmental adaptation in the F1 hybrids of cattle and yak.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Shi-Yi Chen
| | - Cao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhihao Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Longri Breeding Farm of Sichuan Province, Hongyuan, China
| | - Xiaowei Li
- Longri Breeding Farm of Sichuan Province, Hongyuan, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Chen Z, Liu Y, Liang R, Cui C, Zhu Y, Zhang F, Zhang J, Chen X. Comparative transcriptome analysis provides insights into the molecular mechanisms of high-frequency hearing differences between the sexes of Odorrana tormota. BMC Genomics 2022; 23:296. [PMID: 35410120 PMCID: PMC9004125 DOI: 10.1186/s12864-022-08536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Acoustic communication is important for the survival and reproduction of anurans and masking background noise is a critical factor for their effective acoustic communication. Males of the concave-eared frog (Odorrana tormota) have evolved an ultrasonic communication capacity to avoid masking by the widespread background noise of local fast-flowing streams, whereas females exhibit no ultrasonic sensitivity. However, the molecular mechanisms underlying the high-frequency hearing differences between the sexes of O. tormota are still poorly understood. Results In this study, we sequenced the brain transcriptomes of male and female O. tormota, and compared their differential gene expression. A total of 4,605 differentially expressed genes (DEGs) between the sexes of O. tormota were identified and eleven of them were related to auditory based on the annotation and enrichment analysis. Most of these DEGs in males showed a higher expression trend than females in both quantity and expression quantity. The highly expressed genes in males were relatively concentrated in neurogenesis, signal transduction, ion transport and energy metabolism, whereas the up-expressed genes in females were mainly related to the growth and development regulation of specific auditory cells. Conclusions The transcriptome of male and female O. tormota has been sequenced and de novo assembled, which will provide gene reference for further genomic studies. In addition, this is the first research to reveal the molecular mechanisms of sex differences in ultrasonic hearing between the sexes of O. tormota and will provide new insights into the genetic basis of the auditory adaptation in amphibians during their transition from water to land. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08536-2.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China
| | - Yao Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Rui Liang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chong Cui
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yanjun Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Fang Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaohong Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China.
| |
Collapse
|
8
|
Cai Z, Wang C, Chen C, Zou L, Yin S, Liu S, Yuan J, Wu N, Liu X. Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:87-96. [PMID: 35114506 DOI: 10.1016/j.plaphy.2022.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/25/2023]
Abstract
Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene-specific expression to improve the yield of biocomponent.
Collapse
Affiliation(s)
- Zhichen Cai
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengcheng Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cuihua Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lisi Zou
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengxin Yin
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengjin Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiahuan Yuan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunhong Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Zhang QL, Jiang YH, Dong ZX, Li HW, Lin LB. Exposure to benzo[a]pyrene triggers distinct patterns of microRNA transcriptional profiles in aquatic firefly Aquatica wuhana (Coleoptera: Lampyridae). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123409. [PMID: 32763701 DOI: 10.1016/j.jhazmat.2020.123409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Larval aquatic fireflies in fresh water are adversely affected by water pollutants such as benzo(a)pyrene (BaP). However, their response to BaP stress at the microRNA (miRNA)-regulatory level remains unknown. Here, transcriptomes containing 31,872 genes and six miRNA transcriptional profiles were obtained for Aquatica wuhana larvae, and comparative analysis was performed between larvae exposed to BaP (0.01 mg/L) and unexposed controls. Fifteen of 114 miRNAs identified via bioinformatics were detected as differentially expressed (DEMs) upon BaP exposure. Analysis results of predicted target genes of DEM suggests that BaP exposure primarily triggered transcriptional changes of miRNA associated with five major regulatory categories: 1) osmotic balance, 2) energy metabolic efficiency, 3) development, 4) xenobiotic metabolism (oxidative stress), and 5) innate immune response. Based on six innate immune- and xenobiotic metabolism-related pathways enriched by the predicted DEM targets, 11 key BaP-responsive DEMs were further screened to investigate dynamic changes of expression in response to BaP stress at five time points, and also to validate the miRNA sequencing data using quantitative real-time PCR. This study provides valuable information for the protection of firefly resources and supplements the understanding of miRNA regulatory mechanisms in response to water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| |
Collapse
|
10
|
Yang XJ, Zheng HL, Liu YY, Li HW, Jiang YH, Lin LB, Deng XY, Zhang QL. Selection of Reference Genes for Quantitative Real-Time PCR in Aquatica leii (Coleoptera: Lampyridae) Under Five Different Experimental Conditions. Front Physiol 2020; 11:555233. [PMID: 33123022 PMCID: PMC7573347 DOI: 10.3389/fphys.2020.555233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/08/2020] [Indexed: 01/29/2023] Open
Abstract
Aquatic fireflies are important indicators of the quality of freshwater environments and key models for research on insect adaptation to freshwater environments. For these investigations, gene expression analyses using quantitative real-time PCR are heavily dependent on reliable reference genes. In this study, based on a transcriptome assembly and annotation for the aquatic firefly Aquatica leii at the adult and larval stages, 10 candidate reference genes (α-tubulin, β-tubulin, β-actin, EF1A, SDHA, UBQ, GST, GAPDH, RPS31, and RPL13A) were identified for analyses of expression stability. Quantitative real-time PCR analyses for each candidate reference genes in A. leii was conducted for four developmental stages, four adult tissue types, two adult sexes, and two ecological stressors [adults exposed to five temperatures and larvae exposed to four concentrations of benzo(a)pyrene]. Results were evaluated by three independent algorithms (geNorm, NormFinder, and BestKeeper) and one comparative algorithm (RefFinder). The expression stability of candidate reference genes in A. leii differed under various conditions. Reference genes with the most stable expressions levels in different tissues, temperatures, sexes, developmental stages, and concentrations of benzo(a)pyrene were α-tubulin, GST, β-actin, β-tubulin, and α-tubulin, respectively. Furthermore, the optimal normalization factors (NFs) for the quantification of the expression levels of target genes by quantitative real-time PCR analyses of A. leii were identified for each experimental group. In particular, NF = 2 for different tissues (α-tubulin + β-tubulin), different sexes (β-actin + EF1A), and larvae exposed to different concentrations of benzo(a)pyrene (α-tubulin + EF1A); NF = 3 for developmental stages (GST + GAPDH + SDHA) and adults exposed to different temperatures (β-tubulin + EFA + GST). In addition, we surveyed the expression profiles of two target genes (CYP3A and CSP8) in larvae exposed to different concentrations of benzo(a)pyrene and in different adult tissues. The results further validated the reliability of the reference genes. The optimal reference genes for various experimental conditions identified in these analyses provide a useful tool for ecological studies of aquatic fireflies.
Collapse
Affiliation(s)
- Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Hai-Long Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Ying-Yang Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| |
Collapse
|