1
|
He H, Yang H, Foo R, Chan W, Zhu F, Liu Y, Zhou X, Ma L, Wang LF, Zhai W. Population genomic analysis reveals distinct demographics and recent adaptation in the black flying fox (Pteropus alecto). J Genet Genomics 2023; 50:554-562. [PMID: 37182682 DOI: 10.1016/j.jgg.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As the only mammalian group capable of powered flight, bats have many unique biological traits. Previous comparative genomic studies in bats have focused on long-term evolution. However, the micro-evolutionary processes driving recent evolution are largely under-explored. Using resequencing data from 50 black flying foxes (Pteropus alecto), one of the model species for bats, we find that black flying fox has much higher genetic diversity and lower levels of linkage disequilibrium than most of the mammalian species. Demographic inference reveals strong population fluctuations (>100 fold) coinciding with multiple historical events including the last glacial change and Toba super eruption, suggesting that the black flying fox is a very resilient species with strong recovery abilities. While long-term adaptation in the black flying fox is enriched in metabolic genes, recent adaptation in the black flying fox has a unique landscape where recently selected genes are not strongly enriched in any functional category. The demographic history and mode of adaptation suggest that black flying fox might be a well-adapted species with strong evolutionary resilience. Taken together, this study unravels a vibrant landscape of recent evolution for the black flying fox and sheds light on several unique evolutionary processes for bats comparing to other mammalian groups.
Collapse
Affiliation(s)
- Haopeng He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Wharton Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Yunsong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
2
|
Kirschner P, Perez MF, Záveská E, Sanmartín I, Marquer L, Schlick-Steiner BC, Alvarez N, Steiner FM, Schönswetter P. Congruent evolutionary responses of European steppe biota to late Quaternary climate change. Nat Commun 2022; 13:1921. [PMID: 35396388 PMCID: PMC8993823 DOI: 10.1038/s41467-022-29267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Quaternary climatic oscillations had a large impact on European biogeography. Alternation of cold and warm stages caused recurrent glaciations, massive vegetation shifts, and large-scale range alterations in many species. The Eurasian steppe biome and its grasslands are a noteworthy example; they underwent climate-driven, large-scale contractions during warm stages and expansions during cold stages. Here, we evaluate the impact of these range alterations on the late Quaternary demography of several phylogenetically distant plant and insect species, typical of the Eurasian steppes. We compare three explicit demographic hypotheses by applying an approach combining convolutional neural networks with approximate Bayesian computation. We identified congruent demographic responses of cold stage expansion and warm stage contraction across all species, but also species-specific effects. The demographic history of the Eurasian steppe biota reflects major paleoecological turning points in the late Quaternary and emphasizes the role of climate as a driving force underlying patterns of genetic variance on the biome level.
Collapse
Affiliation(s)
- Philipp Kirschner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria. .,Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Manolo F Perez
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain.,Departamento de Genetica e Evolucao, Universidade Federal de Sao Carlos, Rodovia Washington Luis, km 235, 13565905, Sao Carlos, Brazil
| | - Eliška Záveská
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.,Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Isabel Sanmartín
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Laurent Marquer
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | | | - Nadir Alvarez
- Geneva Natural History Museum of Geneva, Route de Malagnou 1, 1208, Genève, Switzerland.,Department of Genetics and Evolution, University of Geneva, Boulevard D'Yvoy 4, 1205, Genève, Switzerland
| | | | - Florian M Steiner
- Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
O'Connell KA, Mulder KP, Wynn A, de Queiroz K, Bell RC. Genomic library preparation and hybridization capture of formalin-fixed tissues and allozyme supernatant for population genomics and considerations for combining capture- and RADseq-based single nucleotide polymorphism data sets. Mol Ecol Resour 2021; 22:487-502. [PMID: 34329532 DOI: 10.1111/1755-0998.13481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
Until recently many historical museum specimens were largely inaccessible to genomic inquiry, but high-throughput sequencing (HTS) approaches have allowed researchers to successfully sequence genomic DNA from dried and fluid-preserved museum specimens. In addition to preserved specimens, many museums contain large series of allozyme supernatant samples, but the amenability of these samples to HTS has not yet been assessed. Here, we compared the performance of a target-capture approach using alternative sources of genomic DNA from 10 specimens of spring salamanders (Plethodontidae: Gyrinophilus porphyriticus) collected between 1985 and 1990: allozyme supernatants, allozyme homogenate pellets and formalin-fixed tissues. We designed capture probes based on double-digest restriction-site associated sequencing (RADseq) derived loci from frozen blood samples available for seven of the specimens and assessed the success and consistency of capture and RADseq approaches. This study design enabled direct comparisons of data quality and potential biases among the different data sets for phylogenomic and population genomic analyses. We found that in phylogenetic analyses, all enrichment types for a given specimen clustered together. In principal component space all capture-based samples clustered together, but RADseq samples did not cluster with corresponding capture-based samples. Single nucleotide polymorphism calls were on average 18.3% different between enrichment types for a given individual, but these discrepancies were primarily due to differences in heterozygous/homozygous single nucleotide polymorphism calls. We demonstrate that both allozyme supernatant and formalin-fixed samples can be successfully used for population genomic analyses and we discuss ways to identify and reduce biases associated with combining capture and RADseq data.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA.,Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, Virginia, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Addison Wynn
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|