1
|
Xiong W, Xu K, Sun JKL, Liu S, Zhao B, Shi J, Herrup K, Chow HM, Lu L, Li J. The mitochondrial long non-coding RNA lncMtloop regulates mitochondrial transcription and suppresses Alzheimer's disease. EMBO J 2024:10.1038/s44318-024-00270-7. [PMID: 39424953 DOI: 10.1038/s44318-024-00270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining mitochondrial homeostasis is crucial for cell survival and organismal health, as evidenced by the links between mitochondrial dysfunction and various diseases, including Alzheimer's disease (AD). Here, we report that lncMtDloop, a non-coding RNA of unknown function encoded within the D-loop region of the mitochondrial genome, maintains mitochondrial RNA levels and function with age. lncMtDloop expression is decreased in the brains of both human AD patients and 3xTg AD mouse models. Furthermore, lncMtDloop binds to mitochondrial transcription factor A (TFAM), facilitates TFAM recruitment to mtDNA promoters, and increases mitochondrial transcription. To allow lncMtDloop transport into mitochondria via the PNPASE-dependent trafficking pathway, we fused the 3'UTR localization sequence of mitochondrial ribosomal protein S12 (MRPS12) to its terminal end, generating a specified stem-loop structure. Introducing this allotropic lncMtDloop into AD model mice significantly improved mitochondrial function and morphology, and ameliorated AD-like pathology and behavioral deficits of AD model mice. Taken together, these data provide insights into lncMtDloop as a regulator of mitochondrial transcription and its contribution to Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Wandi Xiong
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baizhen Zhao
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China.
| | - Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China.
- JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| |
Collapse
|
2
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
3
|
Aagaard A, Bechsgaard J, Sørensen JG, Sandfeld T, Settepani V, Bird TL, Lund MB, Malmos KG, Falck-Rasmussen K, Darolti I, Nielsen KL, Johannsen M, Vosegaard T, Tregenza T, Verhoeven KJF, Mank JE, Schramm A, Bilde T. Molecular Mechanisms of Temperature Tolerance Plasticity in an Arthropod. Genome Biol Evol 2024; 16:evae165. [PMID: 39058286 DOI: 10.1093/gbe/evae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Sandfeld
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tharina L Bird
- General Entomology, DITSONG: National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Arachnology and Myriapodology, National Museum of Namibia, Windhoek, Namibia
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kasper Falck-Rasmussen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| |
Collapse
|
4
|
Jiang Q, Zhu L, Zeng H, Basang Z, Suolang Q, Huang J, Cai Y. Evolutionary adaptations generally reverse phenotypic plasticity to restore ancestral phenotypes during new environment adaptation in cattle. Ecol Evol 2024; 14:e11489. [PMID: 38840586 PMCID: PMC11150418 DOI: 10.1002/ece3.11489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Phenotype plasticity and evolution adaptations are the two main ways in which allow populations to deal with environmental changes, but the potential relationship between them remains controversial. Using a reciprocal transplant approach with cattle adapted to the Tibetan Plateau and adjacent lowlands, we aim to investigate the relative contributions of evolutionary processes and phenotypic plasticity in driving both phenotypic and transcriptomic changes under natural conditions. We observed that while numerous genetic transcriptomic changes were evident during the forward adaptation to highland environments, plastic changes predominantly facilitate the transformation of transcriptomes into a preferred state when Tibetan cattle are reintroduced to lowland habitats. Genes with ancestral plasticity are generally reversed by evolutionary adaptations and show a closer expression level to the ancestral stage in evolved Tibetan cattle. A similar trend was also observed at the phenotypes level, with a majority of biochemical and hemorheology phenotypes showing a tendency to revert to their ancestral patterns, suggesting the restoration of ancestral expression levels is a widespread evolutionary trend during adaptation. The findings of our study contribute to the debate regarding the relative contributions of plasticity and genetic changes in mammal environment adaptation. Furthermore, we highlight that the restoration of ancestral phenotypes represents a general pattern in cattle new environment adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanChina
| | - Li Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hao Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Zhuzha Basang
- Institute of Animal Science and Veterinary MedicineTibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Quji Suolang
- Institute of Animal Science and Veterinary MedicineTibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Jinming Huang
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanChina
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Swaegers J, De Cupere S, Gaens N, Lancaster LT, Carbonell JA, Sánchez Guillén RA, Stoks R. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol Lett 2024; 8:76-88. [PMID: 38370551 PMCID: PMC10872138 DOI: 10.1093/evlett/qrac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/20/2024] Open
Abstract
Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Simon De Cupere
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Noah Gaens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
7
|
Usui T, Lerner D, Eckert I, Angert AL, Garroway CJ, Hargreaves A, Lancaster LT, Lessard JP, Riva F, Schmidt C, van der Burg K, Marshall KE. The evolution of plasticity at geographic range edges. Trends Ecol Evol 2023; 38:831-842. [PMID: 37183152 DOI: 10.1016/j.tree.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Phenotypic plasticity enables rapid responses to environmental change, and could facilitate range shifts in response to climate change. What drives the evolution of plasticity at range edges, and the capacity of range-edge individuals to be plastic, remain unclear. Here, we propose that accurately predicting when plasticity itself evolves or mediates adaptive evolution at expanding range edges requires integrating knowledge on the demography and evolution of edge populations. Our synthesis shows that: (i) the demography of edge populations can amplify or attenuate responses to selection for plasticity through diverse pathways, and (ii) demographic effects on plasticity are modified by the stability of range edges. Our spatially explicit synthesis for plasticity has the potential to improve predictions for range shifts with climate change.
Collapse
Affiliation(s)
- Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | - David Lerner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Isaac Eckert
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Hargreaves
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | | | - Federico Riva
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Chloé Schmidt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-, Leipzig, Germany
| | - Karin van der Burg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katie E Marshall
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Wos G, Palomar G, Marszałek M, Babik W, Sniegula S. The effect of temperature and invasive alien predator on genetic and phenotypic variation in the damselfly Ischnura elegans: cross-latitude comparison. Front Zool 2023; 20:13. [PMID: 37032330 PMCID: PMC10084621 DOI: 10.1186/s12983-023-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, 28040, Madrid, Spain
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
9
|
Wood DP, Holmberg JA, Osborne OG, Helmstetter AJ, Dunning LT, Ellison AR, Smith RJ, Lighten J, Papadopulos AST. Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in Silene uniflora. Nat Ecol Evol 2023; 7:414-423. [PMID: 36702857 PMCID: PMC9998271 DOI: 10.1038/s41559-022-01975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
Phenotypic plasticity in ancestral populations is hypothesized to facilitate adaptation, but evidence is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel adaptive changes has not been explored. The most general finding is that ancestral responses to a new environment are reversed following adaptation (known as reversion). We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared with zinc-sensitive plants. We show that ancestral plasticity that moves expression closer to the optimum value in the new environment influences the evolution of gene expression among genes that are likely to be involved in adaptation and increases the chance that genes are recruited repeatedly during adaptation. However, despite convergence in gene expression levels between independently adapted lineages, ancestral plasticity does not influence how similar expression values of adaptive genes become. Surprisingly, we also observed that ancestral plasticity that increases fitness often becomes genetically determined and fixed, that is, genetically assimilated. These results emphasize the important role of ancestral plasticity in parallel adaptation.
Collapse
Affiliation(s)
- Daniel P Wood
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Jon A Holmberg
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Andrew J Helmstetter
- Fondation pour la Recherche sur la Biodiversité - Centre for the Synthesis and Analysis of Biodiversity, Institut Bouisson Bertrand, Montpellier, France
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, Sheffield, UK
| | - Amy R Ellison
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | | | - Jackie Lighten
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Alexander S T Papadopulos
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK.
| |
Collapse
|
10
|
Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev Camb Philos Soc 2023; 98:191-221. [PMID: 36173002 PMCID: PMC10088029 DOI: 10.1111/brv.12903] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Water temperature is one of the main abiotic factors affecting the structure and functioning of aquatic ecosystems and its alteration can have important effects on biological communities. Macroinvertebrates are excellent bio-indicators and have been used for decades to assess the status of aquatic ecosystems as a result of environmental stresses; however, their responses to temperature are poorly documented and have not been systematically evaluated. The aims of this review are: (i) to collate and summarize responses of freshwater macroinvertebrates to different temperature conditions, comparing the results of experimental and theoretical studies; (ii) to understand how the focus of research on the effects of temperature on macroinvertebrates has changed during the last 51 years; and (iii) to identify research gaps regarding temperature responses, ecosystem types, organism groups, spatiotemporal scales, and geographical regions to suggest possible research directions. We performed a comparative assessment of 223 publications that specifically consider freshwater macroinvertebrates and address the effects of temperature. Short-term studies performed in the laboratory and focusing on insects exposed to a range of temperatures dominated. Field studies were carried out mainly in Europe, at catchment scale and almost exclusively in rivers; they mainly investigated responses to water thermal regime at the community scale. The most frequent biological responses tested were growth rate, fecundity and the time and length of emergence, whereas ecological responses mainly involved composition, richness, and distribution. Thermal research on freshwater macroinvertebrates has undergone a shift since the 2000s when studies involving extended spatiotemporal scales and investigating the effects of global warming first appeared. In addition, recent studies have considered the effects of temperature at genetic and evolutionary scales. Our review revealed that the effects of temperature on macroinvertebrates are manifold with implications at different levels, from genes to communities. However, community-level physiological, phenological and fitness responses tested on individuals or populations should be studied in more detail given their macroecological effects are likely to be enhanced by climate warming. In addition, most field studies at regional scales have used air temperature as a proxy for water temperature; obtaining accurate water temperature data in future studies will be important to allow proper consideration of the spatial thermal heterogeneity of water bodies and any effects on macroinvertebrate distribution patterns. Finally, we found an uneven number of studies across different ecosystems and geographic areas, with lentic bodies and regions outside the West underrepresented. It will also be crucial to include macroinvertebrates of high-altitude and tropical areas in future work because these groups are most vulnerable to climate warming for multiple reasons. Further studies on temperature-macroinvertebrate relationships are needed to fill the current gaps and facilitate appropriate conservation strategies for freshwater ecosystems in an anthropogenic-driven era.
Collapse
Affiliation(s)
- Luca Bonacina
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federica Fasano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Valeria Mezzanotte
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
11
|
Wellenreuther M, Dudaniec RY, Neu A, Lessard JP, Bridle J, Carbonell JA, Diamond SE, Marshall KE, Parmesan C, Singer MC, Swaegers J, Thomas CD, Lancaster LT. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100939. [PMID: 35644339 DOI: 10.1016/j.cois.2022.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors expand or contract their geographic ranges. Although evolutionary changes, and their ecological feedbacks, strongly affect these risks and associated ecological and economic consequences, they are often underappreciated in management efforts. Greater rigor and scope in study design, coupled with innovative technologies and approaches, facilitates our understanding of the causes and consequences of eco-evolutionary dynamics in insect range shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary change and that management strategies will maximize (or minimize) the adaptive potential of range-shifting insects, with benefits for biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anika Neu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, UK
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain; Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Camille Parmesan
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Dept of Geological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Michael C Singer
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, Wentworth Way, York YO10 5DD, UK
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen UK AB24 2TZ.
| |
Collapse
|
12
|
Swaegers J, Koch EL. Gene expression studies of plastic and evolutionary responses to global warming. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100918. [PMID: 35390507 DOI: 10.1016/j.cois.2022.100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Phenotypic plasticity can be a rapid response for coping with global warming, yet may be insufficient to protect species from extinction. Evolutionary adaptation may reinforce adaptive or oppose maladaptive plastic responses. With advances in technology whole transcriptomes can provide us with an unprecedented overview of genes and functional processes underlying the interplay between plasticity and evolution. We advocate that insects provide ideal opportunities to study plasticity in non-adapted and thermally adapted populations to infer reaction norms across the whole transcriptome ('reactionomes'). This can advance our understanding of how the interplay between plasticity and evolution shapes responses to warming. So far, a limited number of studies suggest predominantly maladaptive plastic responses to novel environments that are reduced with time, but much more research is needed to infer general patterns.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium.
| | - Eva L Koch
- School of Biociences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Oomen RA, Hutchings JA. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. J Anim Ecol 2022; 91:1073-1087. [PMID: 35445402 PMCID: PMC9325537 DOI: 10.1111/1365-2656.13707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
Genomic reaction norms represent the range of gene expression phenotypes (usually mRNA transcript levels) expressed by a genotype along an environmental gradient. Reaction norms derived from common‐garden experiments are powerful approaches for disentangling plastic and adaptive responses to environmental change in natural populations. By treating gene expression as a phenotype in itself, genomic reaction norms represent invaluable tools for exploring causal mechanisms underlying organismal responses to climate change across multiple levels of biodiversity. Our goal is to provide the context, framework and motivation for applying genomic reaction norms to study the responses of natural populations to climate change. Here, we describe the utility of integrating genomics with common‐garden‐gradient experiments under a reaction norm analytical framework to answer fundamental questions about phenotypic plasticity, local adaptation, their interaction (i.e. genetic variation in plasticity) and future adaptive potential. An experimental and analytical framework for constructing and analysing genomic reaction norms is presented within the context of polygenic climate change responses of structured populations with gene flow. Intended for a broad eco‐evo readership, we first briefly review adaptation with gene flow and the importance of understanding the genomic basis and spatial scale of adaptation for conservation and management of structured populations under anthropogenic change. Then, within a high‐dimensional reaction norm framework, we illustrate how to distinguish plastic, differentially expressed (difference in reaction norm intercepts) and differentially plastic (difference in reaction norm slopes) genes, highlighting the areas of opportunity for applying these concepts. We conclude by discussing how genomic reaction norms can be incorporated into a holistic framework to understand the eco‐evolutionary dynamics of climate change responses from molecules to ecosystems. We aim to inspire researchers to integrate gene expression measurements into common‐garden experimental designs to investigate the genomics of climate change responses as sequencing costs become increasingly accessible.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway
| | - Jeffrey A Hutchings
- Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
14
|
Swaegers J, Sánchez-Guillén RA, Carbonell JA, Stoks R. Convergence of life history and physiology during range expansion toward the phenotype of the native sister species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151530. [PMID: 34762959 DOI: 10.1016/j.scitotenv.2021.151530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
In our globally changing planet many species show range expansions whereby they encounter new thermal regimes that deviate from those of their source region. Pressing questions are to what extent and through which mechanisms, plasticity and/or evolution, species respond to the new thermal regimes and whether these trait changes are adaptive. Using a common-garden experiment, we tested for plastic and evolutionary trait changes in life history and a set of understudied biochemical/physiological traits during the range expansion of the damselfly Ischnura elegans from France into a warmer region in Spain. To assess the adaptiveness of the trait changes we used the phenotype of its native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. While our design cannot fully exclude maternal effects, our results suggest that edge populations adapted to the local conditions in the newly invaded region through the evolution of a faster pace-of-life (faster development and growth rates), a smaller body size, a higher energy budget and increased expression levels of the heat shock gene DnaJ. Notably, based on convergence toward the phenotype of the native sister species and its thermal responses, and the fit with predictions of life history theory these potential evolutionary changes were likely adaptive. Nevertheless, the convergence toward the native sister species is incomplete for thermal plasticity in traits associated with anaerobic metabolism and melanization. Our results highlight that evolution might at least partly contribute in an adaptive way to the persistence of populations during range expansion into new thermal environments and should be incorporated when predicting and understanding species' range expansions.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium.
| | | | - José A Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium; Department of Zoology, Faculty of Biology, University of Seville, Reina Mercedes, 41012, Seville, Spain
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| |
Collapse
|
15
|
Preston JC, Wooliver R, Driscoll H, Coughlin A, Sheth SN. Spatial variation in high temperature-regulated gene expression predicts evolution of plasticity with climate change in the scarlet monkeyflower. Mol Ecol 2022; 31:1254-1268. [PMID: 34859530 PMCID: PMC8821412 DOI: 10.1111/mec.16300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
A major way that organisms can adapt to changing environmental conditions is by evolving increased or decreased phenotypic plasticity. In the face of current global warming, more attention is being paid to the role of plasticity in maintaining fitness as abiotic conditions change over time. However, given that temporal data can be challenging to acquire, a major question is whether evolution in plasticity across space can predict adaptive plasticity across time. In growth chambers simulating two thermal regimes, we generated transcriptome data for western North American scarlet monkeyflowers (Mimulus cardinalis) collected from different latitudes and years (2010 and 2017) to test hypotheses about how plasticity in gene expression is responding to increases in temperature, and if this pattern is consistent across time and space. Supporting the genetic compensation hypothesis, individuals whose progenitors were collected from the warmer-origin northern 2017 descendant cohort showed lower thermal plasticity in gene expression than their cooler-origin northern 2010 ancestors. This was largely due to a change in response at the warmer (40°C) rather than cooler (20°C) treatment. A similar pattern of reduced plasticity, largely due to a change in response at 40°C, was also found for the cooler-origin northern versus the warmer-origin southern population from 2017. Our results demonstrate that reduced phenotypic plasticity can evolve with warming and that spatial and temporal changes in plasticity predict one another.
Collapse
Affiliation(s)
- Jill C. Preston
- Department of Plant Biology, The University of Vermont, 63 Carrigan Drive, Burlington, VT 05405, USA,Corresponding author:
| | - Rachel Wooliver
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA,Current address: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Heather Driscoll
- Bioinformatics Core, Vermont Biomedical Research Network, Department of Biology, Norwich University, 158 Harmon Drive, Northfield, VT 05663, USA
| | - Aeran Coughlin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Seema N. Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Bodensteiner BL, Gangloff EJ, Kouyoumdjian L, Muñoz MM, Aubret F. Thermal-metabolic phenotypes of the lizard Podarcis muralis differ across elevation, but converge in high-elevation hypoxia. J Exp Biol 2021; 224:273727. [PMID: 34761802 DOI: 10.1242/jeb.243660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In response to a warming climate, many montane species are shifting upslope to track the emergence of preferred temperatures. Characterizing patterns of variation in metabolic, physiological and thermal traits along an elevational gradient, and the plastic potential of these traits, is necessary to understand current and future responses to abiotic constraints at high elevations, including limited oxygen availability. We performed a transplant experiment with the upslope-colonizing common wall lizard (Podarcis muralis) in which we measured nine aspects of thermal physiology and aerobic capacity in lizards from replicate low- (400 m above sea level, ASL) and high-elevation (1700 m ASL) populations. We first measured traits at their elevation of origin and then transplanted half of each group to extreme high elevation (2900 m ASL; above the current elevational range limit of this species), where oxygen availability is reduced by ∼25% relative to sea level. After 3 weeks of acclimation, we again measured these traits in both the transplanted and control groups. The multivariate thermal-metabolic phenotypes of lizards originating from different elevations differed clearly when measured at the elevation of origin. For example, high-elevation lizards are more heat tolerant than their low-elevation counterparts (counter-gradient variation). Yet, these phenotypes converged after exposure to reduced oxygen availability at extreme high elevation, suggesting limited plastic responses under this novel constraint. Our results suggest that high-elevation populations are well suited to their oxygen environments, but that plasticity in the thermal-metabolic phenotype does not pre-adapt these populations to colonize more hypoxic environments at higher elevations.
Collapse
Affiliation(s)
- Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS - UMR 5321, 09200 Moulis, France.,Department of Biological Sciences, Ohio Wesleyan University, Delaware, 43015 OH, USA
| | - Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale du CNRS - UMR 5321, 09200 Moulis, France
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS - UMR 5321, 09200 Moulis, France.,School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
17
|
Swaegers J, Spanier KI, Stoks R. Genetic compensation rather than genetic assimilation drives the evolution of plasticity in response to mild warming across latitudes in a damselfly. Mol Ecol 2020; 29:4823-4834. [PMID: 33031581 DOI: 10.1111/mec.15676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Global warming is causing plastic and evolutionary changes in the phenotypes of ectotherms. Yet, we have limited knowledge on how the interplay between plasticity and evolution shapes thermal responses and underlying gene expression patterns. We assessed thermal reaction norm patterns across the transcriptome and identified associated molecular pathways in northern and southern populations of the damselfly Ischnura elegans. Larvae were reared in a common garden experiment at the mean summer water temperatures experienced at the northern (20°C) and southern (24°C) latitudes. This allowed a space-for-time substitution where the current gene expression levels at 24°C in southern larvae are a proxy for the expected responses of northern larvae under gradual thermal evolution to the predicted 4°C warming. Most differentially expressed genes showed fixed differences across temperatures between latitudes, suggesting that thermal genetic adaptation will mainly evolve through changes in constitutive gene expression. Northern populations also frequently showed plastic responses in gene expression to mild warming, while southern populations were much less responsive to temperature. Thermal responsive genes in northern populations showed to a large extent a pattern of genetic compensation, namely gene expression that was induced at 24°C in northern populations remained at a lower constant level in southern populations, and were associated with metabolic and translation pathways. There was instead little evidence for genetic assimilation of an initial plastic response to mild warming. Our data therefore suggest that genetic compensation rather than genetic assimilation may drive the evolution of plasticity in response to mild warming in this damselfly species.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Katina I Spanier
- Laboratory of Computational Biology, University of Leuven, Leuven, Belgium.,Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|