1
|
Gross M, Dunthorn M, Mauvisseau Q, Stoeck T. Using digital PCR to predict ciliate abundance from ribosomal RNA gene copy numbers. Environ Microbiol 2024; 26:e16619. [PMID: 38649189 DOI: 10.1111/1462-2920.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
Ciliates play a key role in most ecosystems. Their abundance in natural samples is crucial for answering many ecological questions. Traditional methods of quantifying individual species, which rely on microscopy, are often labour-intensive, time-consuming and can be highly biassed. As a result, we investigated the potential of digital polymerase chain reaction (dPCR) for quantifying ciliates. A significant challenge in this process is the high variation in the copy number of the taxonomic marker gene (ribosomal RNA [rRNA]). We first quantified the rRNA gene copy numbers (GCN) of the model ciliate, Paramecium tetraurelia, during different stages of the cell cycle and growth phases. The per-cell rRNA GCN varied between approximately 11,000 and 130,000, averaging around 50,000 copies per cell. Despite these variations in per-cell rRNA GCN, we found a highly significant correlation between GCN and cell numbers. This is likely due to the coexistence of different cellular stages in an uncontrolled (environmental) ciliate population. Thanks to the high sensitivity of dPCR, we were able to detect the target gene in a sample that contained only a single cell. The dPCR approach presented here is a valuable addition to the molecular toolbox in protistan ecology. It may guide future studies in quantifying and monitoring the abundance of targeted (even rare) ciliates in natural samples.
Collapse
Affiliation(s)
- Megan Gross
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Thorsten Stoeck
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Bergman I, Lindström ES, Sassenhagen I. Ciliate Grazing on the Bloom-Forming Microalga Gonyostomum semen. MICROBIAL ECOLOGY 2024; 87:33. [PMID: 38236289 PMCID: PMC10796478 DOI: 10.1007/s00248-024-02344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
The freshwater raphidophyte Gonyostomum semen forms extensive summer blooms in northern European humic lakes. The development of these blooms might be facilitated by a lack of natural top-down control, as few zooplankton species are able to prey on these large algal cells (up to 100 μm) that expel trichocysts upon physical stress. In this study, we describe a small ciliate species (< 17 μm) that preys on G. semen by damaging the cell membrane until cytoplasm and organelles spill out. Sequencing of clonal cultures of the ciliate tentatively identified it as the prostomatid species Urotricha pseudofurcata. Grazing experiments illustrated that feeding by U. cf. pseudofurcata can significantly reduce cell concentrations of the microalga. However, differences in cell size and growth rate between two investigated ciliate strains resulted in noticeably different grazing pressure. Environmental sequencing data from five different lakes supported potential interactions between the two species. Urotricha cf. pseudofurcata might, thus, play an important role in aquatic ecosystems that are regularly dominated by G. semen, reducing the abundance of this bloom-forming microalga and enabling transfer of organic carbon to higher trophic levels.
Collapse
Affiliation(s)
- Ingrid Bergman
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | - Ingrid Sassenhagen
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.
- Biological Oceanography, Institute for Baltic Sea Research in Warnemünde, Seestraße 15, Rostock, 18119, Germany.
| |
Collapse
|
3
|
Boukheloua R, Mukherjee I, Park H, Šimek K, Kasalický V, Ngochera M, Grossart HP, Picazo-Mozo A, Camacho A, Cabello-Yeves PJ, Rodriguez-Valera F, Callieri C, Andrei AS, Pernthaler J, Posch T, Alfreider A, Sommaruga R, Hahn MW, Sonntag B, López-García P, Moreira D, Jardillier L, Lepère C, Biderre-Petit C, Bednarska A, Ślusarczyk M, Tóth VR, Banciu HL, Kormas K, Orlić S, Šantić D, Muyzer G, Herlemann DPR, Tammert H, Bertilsson S, Langenheder S, Zechmeister T, Salmaso N, Storelli N, Capelli C, Lepori F, Lanta V, Vieira HH, Kostanjšek F, Kabeláčová K, Chiriac MC, Haber M, Shabarova T, Fernandes C, Rychtecký P, Znachor P, Szőke-Nagy T, Layoun P, Wong HL, Kavagutti VS, Bulzu PA, Salcher MM, Piwosz K, Ghai R. Global freshwater distribution of Telonemia protists. THE ISME JOURNAL 2024; 18:wrae177. [PMID: 39303138 PMCID: PMC11512789 DOI: 10.1093/ismejo/wrae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Telonemia are one of the oldest identified marine protists that for most part of their history have been recognized as a distinct incertae sedis lineage. Today, their evolutionary proximity to the SAR supergroup (Stramenopiles, Alveolates, and Rhizaria) is firmly established. However, their ecological distribution and importance as a natural predatory flagellate, especially in freshwater food webs, still remain unclear. To unravel the distribution and diversity of the phylum Telonemia in freshwater habitats, we examined over a thousand freshwater metagenomes from all over the world. In addition, to directly quantify absolute abundances, we analyzed 407 samples from 97 lakes and reservoirs using Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). We recovered Telonemia 18S rRNA gene sequences from hundreds of metagenomic samples from a wide variety of habitats, indicating a global distribution of this phylum. However, even after this extensive sampling, our phylogenetic analysis did not reveal any new major clades, suggesting current molecular surveys are near to capturing the full diversity within this group. We observed excellent concordance between CARD-FISH analyses and estimates of abundances from metagenomes. Both approaches suggest that Telonemia are largely absent from shallow lakes and prefer to inhabit the colder hypolimnion of lakes and reservoirs in the Northern Hemisphere, where they frequently bloom, reaching 10%-20% of the total heterotrophic flagellate population, making them important predatory flagellates in the freshwater food web.
Collapse
Affiliation(s)
- Roudaina Boukheloua
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Hongjae Park
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Karel Šimek
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Maxon Ngochera
- Department of Fisheries, Ministry of Natural Resources and Climate Change, 593 Lilongwe, Malawi
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, (IGB), Alte Fischerhuette 2, D-16775 Neuglobsow, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Antonio Picazo-Mozo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980 Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980 Paterna, Valencia, Spain
| | - Pedro J Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980 Paterna, Valencia, Spain
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, 03550, San Juan de Alicante, Alicante, Spain
| | - Cristiana Callieri
- Water Research Institute, National Research Council (IRSA-CNR), Molecular Ecology Group (MEG), Largo Tonolli 50, Verbania 28922, Italy
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, 8802, Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, 8802, Kilchberg, Switzerland
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, 8802, Kilchberg, Switzerland
| | - Albin Alfreider
- Lake and Glacier Ecology Research Group, Department of Ecology, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Ruben Sommaruga
- Lake and Glacier Ecology Research Group, Department of Ecology, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Martin W Hahn
- Research Department for Limnology, Mondsee, University of Innsbruck, A-5310, Mondsee, Austria
| | - Bettina Sonntag
- Research Department for Limnology, Mondsee, University of Innsbruck, A-5310, Mondsee, Austria
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Ludwig Jardillier
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Cécile Lepère
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Corinne Biderre-Petit
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Anna Bednarska
- Department of Hydrobiology, Faculty of Biology, Institute of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Mirosław Ślusarczyk
- Department of Hydrobiology, Faculty of Biology, Institute of Ecology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Hydrobiological Station, Faculty of Biology, University of Warsaw, Pilchy 5, 12-200 Pisz, Poland
| | - Viktor R Tóth
- Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, 8237 Tihany, Hungary
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, Zagreb, Croatia
| | - Danijela Šantić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Daniel P R Herlemann
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, D-18119 Rostock, Germany
- Centre for Limnology, Estonian University of Life Sciences, 6117 Vehendi, Tartu County, Estonia
| | - Helen Tammert
- Centre for Limnology, Estonian University of Life Sciences, 6117 Vehendi, Tartu County, Estonia
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Silke Langenheder
- Department of Ecology and Genetics/Limnology, Uppsala University, SE-75236 Uppsala, Sweden
| | - Thomas Zechmeister
- Biological Station Lake Neusiedl, Seevorgelände 1, 7142 Illmitz, Austria
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38098 S. Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Nicola Storelli
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Campus Mendrisio, Via Flora Ruchat-Roncati 15, CH-6850 Mendrisio, Switzerland
- Department of Botany and Plant Biology, Microbiology Unit, University of Geneva, Sciences III, CH-1211 Geneva, Switzerland
| | - Camilla Capelli
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland, Campus Mendrisio, Via Flora Ruchat-Roncati 15, CH-6850 Mendrisio, Switzerland
| | - Fabio Lepori
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland, Campus Mendrisio, Via Flora Ruchat-Roncati 15, CH-6850 Mendrisio, Switzerland
- État de Vaud, Direction de l'environnement industriel, urbain et rural (DGE-DIREV), 1066 Epalinges, Switzerland
| | - Vojtěch Lanta
- Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Helena Henriques Vieira
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Fran Kostanjšek
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Kateřina Kabeláčová
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Clafy Fernandes
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Znachor
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Tiberiu Szőke-Nagy
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Abdullah Al M, Wang W, Jin L, Chen H, Xue Y, Jeppesen E, Majaneva M, Xu H, Yang J. Planktonic ciliate community driven by environmental variables and cyanobacterial blooms: A 9-year study in two subtropical reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159866. [PMID: 36328255 DOI: 10.1016/j.scitotenv.2022.159866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
It is well-established that environmental variability and cyanobacterial blooms have major effects on the assembly and functioning of bacterial communities in both marine and freshwater habitats. It remains unclear, however, how the ciliate community responds to such changes over the long-term, particularly in subtropical lake and reservoir ecosystems. We analysed 9-year planktonic ciliate data series from the surface water of two subtropical reservoirs to elucidate the role of cyanobacterial bloom and environmental variabilities on the ciliate temporal dynamics. We identified five distinct periods of cyanobacterial succession in both reservoirs. Using multiple time-scale analyses, we found that the interannual variability of ciliate communities was more strongly related to cyanobacterial blooms than to other environmental variables or to seasonality. Moreover, the percentage of species turnover across cyanobacterial bloom and non-bloom periods increased significantly with time over the 9-year period. Phylogenetic analyses further indicated that 84 %-86 % of ciliate community turnover was governed by stochastic dispersal limitation or undominated processes, suggesting that the ciliate communities in subtropical reservoirs were mainly controlled by neutral processes. However, short-term blooms increased the selection pressure and drove 30 %-53 % of the ciliate community turnover. We found that the ciliate community composition was influenced by environmental conditions with nutrients, cyanobacterial biomass and microzooplankton having direct and/or indirect significant effects on the ciliate taxonomic or functional community dynamics. Our results provide new insights into the long-term temporal dynamics of planktonic ciliate communities under cyanobacterial bloom disturbance.
Collapse
Affiliation(s)
- Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Lei Jin
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Markus Majaneva
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Dirren-Pitsch G, Bühler D, Salcher MM, Bassin B, Le Moigne A, Schuler M, Pernthaler J, Posch T. FISHing for ciliates: Catalyzed reporter deposition fluorescence in situ hybridization for the detection of planktonic freshwater ciliates. Front Microbiol 2022; 13:1070232. [PMID: 36578568 PMCID: PMC9790926 DOI: 10.3389/fmicb.2022.1070232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Planktonic ciliate species form multiple trophic guilds and are central components of freshwater food webs. Progress in molecular analytical tools has opened new insight into ciliate assemblages. However, high and variable 18S rDNA copy numbers, typical for ciliates, make reliable quantification by amplicon sequencing extremely difficult. For an exact determination of abundances, the classical morphology-based quantitative protargol staining is still the method of choice. Morphotype analyses, however, are time consuming and need specific taxonomic expertise. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) may represent a promising tool for the analysis of planktonic ciliates by combining molecular identification with microscopic quantification. We tested the applicability of CARD-FISH using nine cultured ciliate species. Eight species- and three genus-specific oligonucleotide probes were designed based on their 18S rRNA genes. The CARD-FISH protocol was adapted and the specificity of probes was established. We subsequently examined the precision of quantitation by CARD-FISH on single cultures and mock assemblages. Successful tests on lake water samples proved that planktonic ciliates could be identified and quantified in field samples by CARD-FISH. Double hybridizations allowed studying interspecific predator prey interactions between two ciliate species. In summary, we demonstrate that CARD-FISH with species-specific probes can facilitate studies on the population dynamics of closely related, small sized or cryptic species at high sampling frequencies.
Collapse
Affiliation(s)
- Gianna Dirren-Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Dominique Bühler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budĕjovice, Czechia
| | - Barbara Bassin
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Alizée Le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Martina Schuler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
6
|
Widespread Occurrence of Two Planktonic Ciliate Species (Urotricha, Prostomatida) Originating from High Mountain Lakes. DIVERSITY 2022. [DOI: 10.3390/d14050362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ciliates of the genus Urotricha are widely distributed and occur in almost any freshwater body. Thus far, almost all species have been described from morphology only. Here, we applied an integrative approach on the morphology, molecular phylogeny and biogeography of two species isolated from high mountain lakes in the Central Alps, Austria. As these remote lakes are known to have water temperatures <15 °C, our hypothesis was that these urotrichs might prefer ‘cold’ environments. We studied the morphological details from living and silver-stained individuals, and their molecular sequences (ribosomal operon, ITS), and screened available datasets for their biogeography. The two Urotricha species resembled morphological features of several congeners. An accurate species assignment was difficult due to several overlapping characteristics. However, we tentatively attributed the investigated species to Urotricha nais and Urotricha globosa. The biogeographic analyses revealed their occurrence in Europe, Africa and Asia, and no correlations to (cold) temperatures were found. Our findings suggest that these two urotrichs, originating from two cold and remote habitats, are probably cryptic species well adapted to their harsh environment.
Collapse
|
7
|
Chen J, Liu H, Bai Y, Qi J, Qi W, Liu H, Peng J, Qu J. Mixing regime shapes the community assembly process, microbial interaction and proliferation of cyanobacterial species Planktothrix in a stratified lake. J Environ Sci (China) 2022; 115:103-113. [PMID: 34969441 DOI: 10.1016/j.jes.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/14/2023]
Abstract
Lake mixing influences aquatic chemical properties and microbial community composition, and thus, we hypothesized that it would alter microbial community assembly and interaction. To clarify this issue, we explored the community assembly processes and cooccurrence networks in four seasons at two depths (epilimnion and hypolimnion) in a mesotrophic and stratified lake (Chenghai Lake), which formed stratification in the summer and turnover in the winter. During the stratification period, the epilimnion and hypolimnion went through contrary assembly processes but converged to similar assembly patterns in the mixing period. In a highly homogeneous selection environment, species with low niche breadth were filtered, resulting in decreased species richness. Water mixing in the winter homogenized the environment, resulting in a simpler microbial cooccurrence network. Interestingly, we observed a high abundance of the cyanobacterial genus Planktothrix in the winter, probably due to nutrient redistribution and Planktothrix adaptivity to the winter environment in which mixing played important roles. Our study provides deeper fundamental insights into how environmental factors influence microbial community structure through community assembly processes.
Collapse
Affiliation(s)
- Junwen Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huacong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Frantal D, Agatha S, Beisser D, Boenigk J, Darienko T, Dirren-Pitsch G, Filker S, Gruber M, Kammerlander B, Nachbaur L, Scheffel U, Stoeck T, Qian K, Weißenbacher B, Pröschold T, Sonntag B. Molecular Data Reveal a Cryptic Diversity in the Genus Urotricha (Alveolata, Ciliophora, Prostomatida), a Key Player in Freshwater Lakes, With Remarks on Morphology, Food Preferences, and Distribution. Front Microbiol 2022; 12:787290. [PMID: 35185817 PMCID: PMC8854374 DOI: 10.3389/fmicb.2021.787290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes.
Collapse
Affiliation(s)
- Daniela Frantal
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Sabine Agatha
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Tatyana Darienko
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- Experimental Phycology and Culture Collection of Algae, University of Göttingen, Göttingen, Germany
| | - Gianna Dirren-Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Sabine Filker
- Molecular Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | | | - Barbara Kammerlander
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- Federal Agency for Water Management, Institute for Aquatic Ecology and Fisheries Management, Mondsee, Austria
| | - Laura Nachbaur
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Ulrike Scheffel
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Thorsten Stoeck
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Kuimei Qian
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Birgit Weißenbacher
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Thomas Pröschold
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Bettina Sonntag
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- *Correspondence: Bettina Sonntag,
| |
Collapse
|
9
|
Yang N, Zhang C, Wang L, Li Y, Zhang W, Niu L, Zhang H, Wang L. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems. WATER RESEARCH 2021; 206:117730. [PMID: 34619413 DOI: 10.1016/j.watres.2021.117730] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The nitrogen (N) cycle is one of the most important nutrient cycles in river systems, and it plays an important role in maintaining biogeochemical balance and global climate stability. One of the main ways that humans have altered riverine ecosystems is through the construction of hydropower dams, which have major effects on biogeochemical cycles. Most previous studies examining the effects of damming on N cycling have focused on the whole budget or flux along rivers, and the role of river as N sources or sinks at the global or catchment scale. However, so far there is still lack of comprehensive and systematic summarize on N cycling and the controlling mechanisms in reservoirs affected by dam impoundment. In this review, we firstly summarize N cycling processes along the longitudinal riverine-transition-lacustrine gradient and the vertically stratified epilimnion-thermocline-hypolimnion gradient. Specifically, we highlight the direct and indirect roles of multi-trophic microbiota and their interactions in N cycling and discuss the main factors controlling these biotic processes. In addition, future research directions and challenges in incorporating multi-trophic levels in bioassessment, environmental flow design, as well as reservoir regulation and restoration are summarized. This review will aid future studies of N fluxes along dammed rivers and provide an essential reference for reservoir management to meet ecological needs.
Collapse
Affiliation(s)
- Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P R China
| |
Collapse
|
10
|
Phenotypic plasticity through disposable genetic adaptation in ciliates. Trends Microbiol 2021; 30:120-130. [PMID: 34275698 DOI: 10.1016/j.tim.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Ciliates have an extraordinary genetic system in which each cell harbors two distinct kinds of nucleus, a transcriptionally active somatic nucleus and a quiescent germline nucleus. The latter undergoes classical, heritable genetic adaptation, while adaptation of the somatic nucleus is only short-term and thus disposable. The ecological and evolutionary relevance of this nuclear dimorphism have never been well formalized, which is surprising given the long history of using ciliates such as Tetrahymena and Paramecium as model organisms. We present a novel, alternative explanation for ciliate nuclear dimorphism which, we argue, should be considered an instrument of phenotypic plasticity by somatic selection on the level of the ciliate clone, as if it were a diffuse multicellular organism. This viewpoint helps to put some enigmatic aspects of ciliate biology into perspective and presents the diversity of ciliates as a large natural experiment that we can exploit to study phenotypic plasticity and organismality.
Collapse
|
11
|
Forster D, Qu Z, Pitsch G, Bruni EP, Kammerlander B, Pröschold T, Sonntag B, Posch T, Stoeck T. Lake Ecosystem Robustness and Resilience Inferred from a Climate-Stressed Protistan Plankton Network. Microorganisms 2021; 9:microorganisms9030549. [PMID: 33800927 PMCID: PMC8001626 DOI: 10.3390/microorganisms9030549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October–April; May–September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties.
Collapse
Affiliation(s)
- Dominik Forster
- Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany; (D.F.); (Z.Q.)
| | - Zhishuai Qu
- Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany; (D.F.); (Z.Q.)
| | - Gianna Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland; (G.P.); (E.P.B.); (T.P.)
| | - Estelle P. Bruni
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland; (G.P.); (E.P.B.); (T.P.)
- Laboratory of Soil Biodiversity, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Barbara Kammerlander
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria; (B.K.); (T.P.); (B.S.)
| | - Thomas Pröschold
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria; (B.K.); (T.P.); (B.S.)
| | - Bettina Sonntag
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria; (B.K.); (T.P.); (B.S.)
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland; (G.P.); (E.P.B.); (T.P.)
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany; (D.F.); (Z.Q.)
- Correspondence: ; Tel.: +49-631-205-2502; Fax: +49-631-2051-32496
| |
Collapse
|
12
|
Piwosz K, Mukherjee I, Salcher MM, Grujčić V, Šimek K. CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology. Front Microbiol 2021; 12:640066. [PMID: 33746931 PMCID: PMC7970053 DOI: 10.3389/fmicb.2021.640066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phagotrophic protists are key players in aquatic food webs. Although sequencing-based studies have revealed their enormous diversity, ecological information on in situ abundance, feeding modes, grazing preferences, and growth rates of specific lineages can be reliably obtained only using microscopy-based molecular methods, such as Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). CARD-FISH is commonly applied to study prokaryotes, but less so to microbial eukaryotes. Application of this technique revealed that Paraphysomonas or Spumella-like chrysophytes, considered to be among the most prominent members of protistan communities in pelagic environments, are omnipresent but actually less abundant than expected, in contrast to little known groups such as heterotrophic cryptophyte lineages (e.g., CRY1), cercozoans, katablepharids, or the MAST lineages. Combination of CARD-FISH with tracer techniques and application of double CARD-FISH allow visualization of food vacuole contents of specific flagellate groups, thus considerably challenging our current, simplistic view that they are predominantly bacterivores. Experimental manipulations with natural communities revealed that larger flagellates are actually omnivores ingesting both prokaryotes and other protists. These new findings justify our proposition of an updated model of microbial food webs in pelagic environments, reflecting more authentically the complex trophic interactions and specific roles of flagellated protists, with inclusion of at least two additional trophic levels in the nanoplankton size fraction. Moreover, we provide a detailed CARD-FISH protocol for protists, exemplified on mixo- and heterotrophic nanoplanktonic flagellates, together with tips on probe design, a troubleshooting guide addressing most frequent obstacles, and an exhaustive list of published probes targeting protists.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
- Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| | - Michaela M. Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| | - Vesna Grujčić
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| |
Collapse
|