1
|
Liu P, Li G, Zhao N, Liu Q, Liu X, Song X, Shi X, Lun X, Zhang L, Wang J, Lu L. Climate heterogeneity, season variation, and sexual dimorphism modulate the association between MHC II diversity and parasite variation in striped hamster. Integr Zool 2024; 19:1181-1198. [PMID: 38084399 DOI: 10.1111/1749-4877.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Parasite-mediated selection is widely believed to play a crucial role in maintaining the diversity of the major histocompatibility complex (MHC) genes, which is thought to be maintained through heterozygote advantage, rare-allele advantage, and fluctuating selection. However, the relationship between parasite pressure and MHC diversity has yielded inconsistent findings. These inconsistencies may arise from the influence of environmental factors and individual variations in traits on host-parasite interactions. To address these issues, our study extensively investigated populations of striped hamsters inhabiting regions characterized by environmental heterogeneity. The primary objective was to examine the universality of parasite-mediated selection mechanisms. Our observations revealed the presence of multiple parasite infections, accompanied by spatial and temporal variations in parasite communities and infection patterns among individual hamsters. Specifically, the temperature was found to influence all four parasite indices, while the presence of gamasid mites and parasite richness decreased with increasing precipitation. We also noted significant seasonal variation in parasite dynamics. Moreover, a significant sexual dimorphism was observed with males exhibiting a considerably higher parasite burden compared to their female counterparts. Lastly, we identified the maintenance of MHC polymorphism in striped hamsters as being driven by the heterozygote advantage and fluctuating selection mechanisms. This study underscores the significance of ecological processes in comprehending host-parasite systems and highlights the necessity of considering environmental factors and individual traits when elucidating the mechanisms underlying MHC diversity mediated by parasites.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinfei Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Gómez-Llano M, Bassar RD, Svensson EI, Tye SP, Siepielski AM. Meta-analytical evidence for frequency-dependent selection across the tree of life. Ecol Lett 2024; 27:e14477. [PMID: 39096013 DOI: 10.1111/ele.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024]
Abstract
Explaining the maintenance of genetic variation in fitness-related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency-dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta-analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non-significant in mesocosms and field-based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long-standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Environmental and Life Science, Karlstad University, Karlstad, Sweden
| | - Ronald D Bassar
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Rodgers ML, Bolnick DI. Opening a can of worms: a test of the co-infection facilitation hypothesis. Oecologia 2024; 204:317-325. [PMID: 37386196 PMCID: PMC10756930 DOI: 10.1007/s00442-023-05409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Parasitic infections are a global occurrence and impact the health of many species. Coinfections, where two or more species of parasite are present in a host, are a common phenomenon across species. Coinfecting parasites can interact directly or indirectly via their manipulation of (and susceptibility to) the immune system of their shared host. Helminths, such as the cestode Schistocephalus solidus, are well known to suppress immunity of their host (threespine stickleback, Gasterosteus aculeatus), potentially facilitating other parasite species. Yet, hosts can evolve a more robust immune response (as seen in some stickleback populations), potentially turning facilitation into inhibition. Using wild-caught stickleback from 20 populations with non-zero S. solidus prevalence, we tested an a priori hypothesis that S. solidus infection facilitates infection by other parasites. Consistent with this hypothesis, individuals with S. solidus infections have 18.6% higher richness of other parasites compared to S. solidus-uninfected individuals from the same lakes. This facilitation-like trend is stronger in lakes where S. solidus is particularly successful but is reversed in lakes with sparse and smaller cestodes (indicative of stronger host immunity). These results suggest that a geographic mosaic of host-parasite co-evolution might lead to a mosaic of between-parasite facilitation/inhibition effects.
Collapse
Affiliation(s)
- Maria L Rodgers
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Biological Sciences, North Carolina State University, Morehead City, NC, 28557, USA.
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Liu P, Li G, Zhao N, Song X, Wang J, Shi X, Wang B, Zhang L, Dong L, Li Q, Liu Q, Lu L. Neutral Forces and Balancing Selection Interplay to Shape the Major Histocompatibility Complex Spatial Patterns in the Striped Hamster in Inner Mongolia: Suggestive of Broad-Scale Local Adaptation. Genes (Basel) 2023; 14:1500. [PMID: 37510404 PMCID: PMC10379431 DOI: 10.3390/genes14071500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) plays a key role in the adaptive immune response to pathogens due to its extraordinary polymorphism. However, the spatial patterns of MHC variation in the striped hamster remain unclear, particularly regarding the relative contribution of the balancing selection in shaping MHC spatial variation and diversity compared to neutral forces. METHODS In this study, we investigated the immunogenic variation of the striped hamster in four wild populations in Inner Mongolia which experience a heterogeneous parasitic burden. Our goal was to identify local adaptation by comparing the genetic structure at the MHC with that at seven microsatellite loci, taking into account neutral processes. RESULTS We observed significant variation in parasite pressure among sites, with parasite burden showing a correlation with temperature and precipitation. Molecular analysis revealed a similar co-structure between MHC and microsatellite loci. We observed lower genetic differentiation at MHC loci compared to microsatellite loci, and no correlation was found between the two. CONCLUSIONS Overall, these results suggest a complex interplay between neutral evolutionary forces and balancing selection in shaping the spatial patterns of MHC variation. Local adaptation was not detected on a small scale but may be applicable on a larger scale.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xinfei Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bin Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Public Health School, Jiamusi University, Jiamusi 154007, China
| | - Lu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingduo Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
5
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
6
|
Rodgers ML, Bolnick DI. Opening a can of worms: a test of the coinfection facilitation hypothesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541347. [PMID: 37292793 PMCID: PMC10245757 DOI: 10.1101/2023.05.18.541347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Parasitic infections are a global occurrence and impact the health of many species. Coinfections, where two or more species of parasite are present in a host, are a common phenomenon across species. Coinfecting parasites can interact directly, or indirectly via their manipulation of (and susceptibility to) the immune system of their shared host. Helminths, such as the cestode Schistocephalus solidus , are well known to suppress immunity of their host (threespine stickleback, Gasterosteus aculeatus ), potentially facilitating other parasite species. Yet, hosts can evolve a more robust immune response (as seen in some stickleback populations), potentially turning facilitation into inhibition. Using wild-caught stickleback from 21 populations with non-zero S. solidus prevalence, we tested an a priori hypothesis that S. solidus infection facilitates infection by other parasites. Consistent with this hypothesis, individuals with S. solidus infections have 18.6% higher richness of other parasites, compared to S. solidus -uninfected individuals from the same lakes. This facilitation-like trend is stronger in lakes where S. solidus is particularly successful but is reversed in lakes with sparse and smaller cestodes (indicative of stronger host immunity). These results suggest that a geographic mosaic of host-parasite coevolution might lead to a mosaic of between-parasite facilitation/inhibition effects.
Collapse
|
7
|
Petersen RM, Bergey CM, Roos C, Higham JP. Relationship between genome-wide and MHC class I and II genetic diversity and complementarity in a nonhuman primate. Ecol Evol 2022; 12:e9346. [PMID: 36311412 PMCID: PMC9596323 DOI: 10.1002/ece3.9346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Although mate choice is expected to favor partners with advantageous genetic properties, the relative importance of genome-wide characteristics, such as overall heterozygosity or kinship, versus specific loci, is unknown. To disentangle genome-wide and locus-specific targets of mate choice, we must first understand congruence in global and local variation within the same individual. This study compares genetic diversity, both absolute and relative to other individuals (i.e., complementarity), assessed across the genome to that found at the major histocompatibility complex (MHC), a hyper-variable gene family integral to immune system function and implicated in mate choice across species. Using DNA from 22 captive olive baboons (Papio anubis), we conducted double digest restriction site-associated DNA sequencing to estimate genome-wide heterozygosity and kinship, and sequenced two class I and two class II MHC loci. We found that genome-wide diversity was not associated with MHC diversity, and that diversity at class I MHC loci was not correlated with diversity at class II loci. Additionally, kinship was a significant predictor of the number of MHC alleles shared between dyads at class II loci. Our results provide further evidence of the strong selective pressures maintaining genetic diversity at the MHC in comparison to other randomly selected sites throughout the genome. Furthermore, our results indicate that class II MHC disassortative mate choice may mediate inbreeding avoidance in this population. Our study suggests that mate choice favoring genome-wide genetic diversity is not always synonymous with mate choice favoring MHC diversity, and highlights the importance of controlling for kinship when investigating MHC-associated mate choice.
Collapse
Affiliation(s)
- Rachel M. Petersen
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Christina M. Bergey
- Department of Genetics and the Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - James P. Higham
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| |
Collapse
|
8
|
Migalska M, Przesmycka K, Alsarraf M, Bajer A, Behnke-Borowczyk J, Grzybek M, Behnke JM, Radwan J. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Mol Ecol 2022; 31:3400-3415. [PMID: 35510766 PMCID: PMC9325469 DOI: 10.1111/mec.16486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex (MHC) genes encode proteins crucial for adaptive immunity of vertebrates. Negative frequency-dependent selection (NFDS), resulting from adaptation of parasites to common MHC types, has been hypothesized to maintain high, functionally relevant polymorphism of MHC, but demonstration of this relationship has remained elusive. In particular, differentiation of NFDS from fluctuating selection, resulting from changes in parasite communities in time and space (FS), has proved difficult in short-term studies. Here, we used temporal data, accumulated through long-term monitoring of helminths infecting bank voles (Myodes glareolus), to test specific predictions of NFDS on MHC class II. Data were collected in three, moderately genetically differentiated subpopulations in Poland, which were characterized by some stable spatiotemporal helminth communities but also events indicating introduction of new species and loss of others. We found a complex association between individual MHC diversity and species richness, where intermediate numbers of DRB supertypes correlated with lowest species richness, but the opposite was true for DQB supertypes - arguing against universal selection for immunogenetic optimality. We also showed that particular MHC supertypes explain a portion of the variance in prevalence and abundance of helminths, but this effect was subpopulation-specific, which is consistent with both NFDS and FS. Finally, in line with NFDS, we found that certain helminths that have recently colonized or spread in a given subpopulation, more frequently or intensely infected voles with MHC supertypes that have been common in the recent past. Overall, our results highlight complex spatial and temporal patterns of MHC-parasite associations, the latter being consistent with Red Queen coevolutionary dynamics.
Collapse
Affiliation(s)
- Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karolina Przesmycka
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Mohammed Alsarraf
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Bajer
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Maciej Grzybek
- Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-429, Gdynia, Poland
| | - Jerzy M Behnke
- School of Life Science, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
9
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|
10
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
11
|
Hund AK, Fuess LE, Kenney ML, Maciejewski MF, Marini JM, Shim KC, Bolnick DI. Population-level variation in parasite resistance due to differences in immune initiation and rate of response. Evol Lett 2022; 6:162-177. [PMID: 35386836 PMCID: PMC8966477 DOI: 10.1002/evl3.274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.
Collapse
Affiliation(s)
- Amanda K. Hund
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesota55123
| | - Lauren E. Fuess
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
- Current Address: Department of BiologyTexas State UniversitySan MarcosTexas78666
| | - Mariah L. Kenney
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Meghan F. Maciejewski
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Joseph M. Marini
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Kum Chuan Shim
- Department of Ecology, Evolution, and BehaviorUniversity of Texas at AustinAustinTexas78712
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| |
Collapse
|