1
|
Crates R, von Takach B, Young CM, Stojanovic D, Neaves LE, Murphy L, Gautschi D, Hogg CJ, Heinsohn R, Bell P, Farquharson KA. Genomic insights into the critically endangered King Island scrubtit. J Hered 2024; 115:552-564. [PMID: 38814752 PMCID: PMC11334212 DOI: 10.1093/jhered/esae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Small, fragmented, or isolated populations are at risk of population decline due to fitness costs associated with inbreeding and genetic drift. The King Island scrubtit Acanthornis magna greeniana is a critically endangered subspecies of the nominate Tasmanian scrubtit A. m. magna, with an estimated population of <100 individuals persisting in three patches of swamp forest. The Tasmanian scrubtit is widespread in wet forests on mainland Tasmania. We sequenced the scrubtit genome using PacBio HiFi and undertook a population genomic study of the King Island and Tasmanian scrubtits using a double-digest restriction site-associated DNA (ddRAD) dataset of 5,239 SNP loci. The genome was 1.48 Gb long, comprising 1,518 contigs with an N50 of 7.715 Mb. King Island scrubtits formed one of four overall genetic clusters, but separated into three distinct subpopulations when analyzed independently of the Tasmanian scrubtit. Pairwise FST values were greater among the King Island scrubtit subpopulations than among most Tasmanian scrubtit subpopulations. Genetic diversity was lower and inbreeding coefficients were higher in the King Island scrubtit than all except one of the Tasmanian scrubtit subpopulations. We observed crown baldness in 8/15 King Island scrubtits, but 0/55 Tasmanian scrubtits. Six loci were significantly associated with baldness, including one within the DOCK11 gene which is linked to early feather development. Contemporary gene flow between King Island scrubtit subpopulations is unlikely, with further field monitoring required to quantify the fitness consequences of its small population size, low genetic diversity, and high inbreeding. Evidence-based conservation actions can then be implemented before the taxon goes extinct.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Catherine M Young
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Linda E Neaves
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Liam Murphy
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Daniel Gautschi
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2050, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney 2050, Australia
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Phil Bell
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2050, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney 2050, Australia
| |
Collapse
|
2
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
3
|
Santos AS, Cazetta E, Faria D, Lima TM, Lopes MTG, Carvalho CDS, Alves‐Pereira A, Morante‐Filho JC, Gaiotto FA. Tropical forest loss and geographic location drive the functional genomic diversity of an endangered palm tree. Evol Appl 2023; 16:1257-1273. [PMID: 37492151 PMCID: PMC10363835 DOI: 10.1111/eva.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 07/27/2023] Open
Abstract
Human activity has diminished forests in different terrestrial ecosystems. This is well illustrated in the Brazilian Atlantic Forest, which still hosts high levels of species richness and endemism, even with only 28% of its original extent remaining. The consequences of such forest loss in remaining populations can be investigated with several approaches, including the genomic perspective, which allows a broader understanding of how human disturbance influences the genetic variability in natural populations. In this context, our study investigated the genomic responses of Euterpe edulis Martius, an endangered palm tree, in forest remnants located in landscapes presenting different forest cover amount and composed by distinct bird assemblage that disperse its seeds. We sampled 22 areas of the Brazilian Atlantic Forest in four regions using SNP markers inserted into transcribed regions of the genome of E. edulis, distinguishing neutral loci from those putatively under natural selection (outlier). We demonstrate that populations show patterns of structure and genetic variability that differ between regions, as a possible reflection of deforestation and biogeographic histories. Deforested landscapes still maintain high neutral genetic diversity due to gene flow over short distances. Overall, we not only support previous evidence with microsatellite markers, but also show that deforestation can influence the genetic variability outlier, in the scenario of selective pressures imposed by these stressful environments. Based on our findings, we suggest that, to protect genetic diversity in the long term, it is necessary to reforest and enrich deforested areas, using seeds from populations in the same management target region.
Collapse
Affiliation(s)
- Alesandro Souza Santos
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Eliana Cazetta
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Deborah Faria
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Thâmara Moura Lima
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia – Campus SeabraSeabraBrazil
| | | | | | | | - José Carlos Morante‐Filho
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| |
Collapse
|
4
|
von Takach B, Sargent H, Penton CE, Rick K, Murphy BP, Neave G, Davies HF, Hill BM, Banks SC. Population genomics and conservation management of the threatened black-footed tree-rat (Mesembriomys gouldii) in northern Australia. Heredity (Edinb) 2023; 130:278-288. [PMID: 36899176 PMCID: PMC10162988 DOI: 10.1038/s41437-023-00601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.
Collapse
Affiliation(s)
- Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Holly Sargent
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Cara E Penton
- Warddeken Land Management Ltd, Darwin, NT, Australia
| | - Kate Rick
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Brett P Murphy
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Georgina Neave
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Hugh F Davies
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Brydie M Hill
- Flora and Fauna Division, Department of Environment, Parks and Water Security, Northern Territory Government, Berrimah, NT, 0831, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia.
| |
Collapse
|
5
|
Zhou C, Xia S, Wen Q, Song Y, Jia Q, Wang T, Liu L, Ouyang T. Genetic structure of an endangered species Ormosia henryi in southern China, and implications for conservation. BMC PLANT BIOLOGY 2023; 23:220. [PMID: 37098472 PMCID: PMC10131447 DOI: 10.1186/s12870-023-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The evergreen broadleaved forest (EBLF) is an iconic vegetation type of East Asia, and it contributes fundamentally to biodiversity-based ecosystem functioning and services. However, the native habitat of EBLFs keeps on decreasing due to anthropogenic activities. Ormosia henryi is a valuable rare woody species in EBLFs that is particularly sensitive to habitat loss. In this study, ten natural populations of O. henryi in southern China were sampled, and then genotyping by sequencing (GBS) was applied to elucidate the standing genetic variation and population structure of this endangered species. RESULTS In ten O. henryi populations, 64,158 high-quality SNPs were generated by GBS. Based on these markers, a relatively low level of genetic diversity was found with the expected heterozygosity (He) ranging from 0.2371 to 0.2901. Pairwise FST between populations varied from 0.0213 to 0.1652, indicating a moderate level of genetic differentiation. However, contemporary gene flow between populations were rare. Assignment test and principal component analysis (PCA) both supported that O. henryi populations in southern China could be divided into four genetic groups, and prominent genetic admixture was found in those populations located in southern Jiangxi Province. Mantel tests and multiple matrix regression with randomization (MMRR) analyses suggested that isolation by distance (IBD) could be the possible reason for describing the current population genetic structure. In addition, the effective population size (Ne) of O. henryi was extremely small, and showed a continuous declining trend since the Last Glacial Period. CONCLUSIONS Our results indicate that the endangered status of O. henryi is seriously underestimated. Artificial conservation measures should be applied as soon as possible to prevent O. henryi from the fate of extinction. Further studies are needed to elucidate the mechanism that leading to the continuous loss of genetic diversity in O. henryi and help to develop a better conservation strategy.
Collapse
Affiliation(s)
- Chengchuan Zhou
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Shiqi Xia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Qiang Wen
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Ying Song
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Quanquan Jia
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Tian Wang
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China
| | - Liting Liu
- Identification and Evaluation Center for Forest Germplasm Resources in Jiangxi Province, Jiangxi Academy of Forestry, Nanchang, China.
| | - Tianlin Ouyang
- Jiangxi Provincial Forestry Science and Technology Experiment Center, Ganzhou, China.
| |
Collapse
|
6
|
von Takach B, Ranjard L, Burridge CP, Cameron SF, Cremona T, Eldridge MDB, Fisher DO, Frankenberg S, Hill BM, Hohnen R, Jolly CJ, Kelly E, MacDonald AJ, Moussalli A, Ottewell K, Phillips BL, Radford IJ, Spencer PBS, Trewella GJ, Umbrello LS, Banks SC. Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads. Mol Ecol 2022; 31:5468-5486. [PMID: 36056907 PMCID: PMC9826391 DOI: 10.1111/mec.16680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.
Collapse
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia,School of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Louis Ranjard
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,PlantTech Research InstituteTaurangaNew Zealand
| | | | - Skye F. Cameron
- Australian Wildlife ConservancyKimberleyWestern AustraliaAustralia,School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Teigan Cremona
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Diana O. Fisher
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Brydie M. Hill
- Flora and Fauna Division, Department of Environment, Parks and Water SecurityNorthern Territory GovernmentNorthern TerritoryAustralia
| | - Rosemary Hohnen
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Chris J. Jolly
- Institute of Land, Water and Society, School of Environmental ScienceCharles Sturt UniversityAlburyNew South WalesAustralia,School of Natural SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Ella Kelly
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anna J. MacDonald
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,Australian Antarctic Division, Department of AgricultureWater and the EnvironmentKingstonTasmaniaAustralia
| | - Adnan Moussalli
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia,Department of ScienceMuseums VictoriaMelbourneVictoriaAustralia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Ben L. Phillips
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ian J. Radford
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Peter B. S. Spencer
- Environmental and Conservation Sciences, Murdoch UniversityPerthWestern AustraliaAustralia
| | - Gavin J. Trewella
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Linette S. Umbrello
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia,Collections and Research CentreWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| |
Collapse
|
7
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
8
|
Filipe JC, Rymer PD, Byrne M, Hardy G, Mazanec R, Ahrens CW. Signatures of natural selection in a foundation tree along Mediterranean climatic gradients. Mol Ecol 2022; 31:1735-1752. [PMID: 35038378 PMCID: PMC9305101 DOI: 10.1111/mec.16351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean‐type climates (MTC). Forest management that enhance forests’ resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South‐west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype‐association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future.
Collapse
Affiliation(s)
- J C Filipe
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - P D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - G Hardy
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - R Mazanec
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - C W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University
| |
Collapse
|
9
|
Lettoof DC, Thomson VA, Cornelis J, Bateman PW, Aubret F, Gagnon MM, von Takach B. Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow. PLoS One 2021; 16:e0259124. [PMID: 34714831 PMCID: PMC8555784 DOI: 10.1371/journal.pone.0259124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.
Collapse
Affiliation(s)
- Damian C. Lettoof
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Vicki A. Thomson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jari Cornelis
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Philip W. Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Marthe M. Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|