1
|
Esposito G, Meletiadis A, Sciuto S, Prearo M, Gagliardi F, Corrias I, Pira A, Dondo A, Briguglio P, Ghittino C, Dedola D, Bozzetta E, Acutis PL, Pastorino P, Colussi S. First report of recurrent parthenogenesis as an adaptive reproductive strategy in the endangered common smooth-hound shark Mustelus mustelus. Sci Rep 2024; 14:17171. [PMID: 39060341 PMCID: PMC11282070 DOI: 10.1038/s41598-024-67804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Parthenogenesis, or virgin birth, describes a mode of reproduction where an egg develops into an offspring without fertilization, and is observed across various vertebrate taxa, excluding mammals. Obligate parthenogenesis, found in around 100 vertebrate species and 1000 invertebrate species, is relatively rare. Conversely, facultative parthenogenesis, where females can reproduce both sexually and parthenogenetically, is observed in some vertebrates, including elasmobranchs. Notably, this phenomenon in elasmobranchs is mainly documented in captivity, allowing for detailed long-term observation. Specifically, this study reports the first case of facultative parthenogenesis in the common smooth-hound shark Mustelus mustelus, a species classified by IUCN as endangered. Here we show that the juvenile M. mustelus were born through parthenogenesis, exhibiting homozygosity at each genetic marker, consistent with terminal fusion automixis. Remarkably, this finding reveals that parthenogenesis can occur annually in these sharks, alternating between two females, and conclusively excludes long-term sperm storage as a cause. Consequently, this enhances our understanding of parthenogenesis in elasmobranchs and highlights the reproductive flexibility of M. mustelus. Overall, these results contribute to our broader understanding of reproductive strategies in elasmobranchs, which could inform conservation efforts for endangered species.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| | - Arianna Meletiadis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Simona Sciuto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Flavio Gagliardi
- Panaque S.R.L. - Acquario Di Cala Gonone, Via La Favorita Snc, 08022, Cala Gonone, Dorgali, Italy
| | - Ilaria Corrias
- Panaque S.R.L. - Acquario Di Cala Gonone, Via La Favorita Snc, 08022, Cala Gonone, Dorgali, Italy
| | - Angela Pira
- Panaque S.R.L. - Acquario Di Cala Gonone, Via La Favorita Snc, 08022, Cala Gonone, Dorgali, Italy
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Paolo Briguglio
- Clinica Veterinaria Duemari, Via Cagliari 313, 09170, Oristano, Italy
| | - Claudio Ghittino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Daniele Dedola
- Istituto Zooprofilattico Sperimentale Della Sardegna, Via Duca Degli Abruzzi 8, 07100, Sassari, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| |
Collapse
|
2
|
Ho DV, Tormey D, Odell A, Newton AA, Schnittker RR, Baumann DP, Neaves WB, Schroeder MR, Sigauke RF, Barley AJ, Baumann P. Post-meiotic mechanism of facultative parthenogenesis in gonochoristic whiptail lizard species. eLife 2024; 13:e97035. [PMID: 38847388 PMCID: PMC11161175 DOI: 10.7554/elife.97035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary implications have remained unclear. A common finding across many incidences of FP is either a high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in next-generation sequencing data. This has led to the proposal that second polar body fusion following the meiotic divisions restores diploidy and thereby mimics fertilization. Here, we show that FP occurring in the gonochoristic Aspidoscelis species A. marmoratus and A. arizonae results in genome-wide homozygosity, an observation inconsistent with polar body fusion as the underlying mechanism of restoration. Instead, a high-quality reference genome for A. marmoratus and analysis of whole-genome sequencing from multiple FP and control animals reveals that a post-meiotic mechanism gives rise to homozygous animals from haploid, unfertilized oocytes. Contrary to the widely held belief that females need to be isolated from males to undergo FP, females housed with conspecific and heterospecific males produced unfertilized eggs that underwent spontaneous development. In addition, offspring arising from both fertilized eggs and parthenogenetic development were observed to arise from a single clutch. Strikingly, our data support a mechanism for facultative parthenogenesis that removes all heterozygosity in a single generation. Complete homozygosity exposes the genetic load and explains the high rate of congenital malformations and embryonic mortality associated with FP in many species. Conversely, for animals that develop normally, FP could potentially exert strong purifying selection as all lethal recessive alleles are purged in a single generation.
Collapse
Affiliation(s)
- David V Ho
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
- Institute of Quantitative and Computational Biosciences, Johannes Gutenberg UniversityMainzGermany
| | - Duncan Tormey
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Aaron Odell
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
| | | | | | - Diana P Baumann
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | | | - Anthony J Barley
- School of Mathematical and Natural Sciences, Arizona State University–West Valley CampusGlendaleUnited States
| | - Peter Baumann
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
- Institute of Quantitative and Computational Biosciences, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
3
|
Villalba A. Queering the genome: ethical challenges of epigenome editing in same-sex reproduction. JOURNAL OF MEDICAL ETHICS 2024:jme-2023-109609. [PMID: 38408852 DOI: 10.1136/jme-2023-109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
In this article, I explore the ethical dimensions of same-sex reproduction achieved through epigenome editing-an innovative and transformative technique. For the first time, I analyse the potential normativity of this disruptive approach for reproductive purposes, focusing on its implications for lesbian couples seeking genetically related offspring. Epigenome editing offers a compelling solution to the complex ethical challenges posed by traditional gene editing, as it sidesteps genome modifications and potential long-term genetic consequences. The focus of this article is to systematically analyse the bioethical issues related to the use of epigenome editing for same-sex reproduction. I critically assess the ethical acceptability of epigenome editing with reproductive purposes from multiple angles, considering harm perspectives, the comparison of ethical issues related to gene and epigenome editing, and feminist theories. This analysis reveals that epigenome editing emerges as an ethically acceptable means for lesbian couples to have genetically related children. Moreover, the experiments of a reproductive use of epigenome editing discussed in this article transcend bioethics, shedding light on the broader societal implications of same-sex reproduction. It challenges established notions of biological reproduction and prompts a reevaluation of how we define the human embryo, while poses some issues in the context of gender self-identification and family structures. In a world that increasingly values inclusivity and diversity, this article aims to reveal a progressive pathway for reproductive medicine and bioethics, as well as underscores the need for further philosophical research in this emerging and fertile domain.
Collapse
Affiliation(s)
- Adrian Villalba
- Department of Philosophy I, Universidad de Granada, Granada, Spain
- Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
4
|
Erdolu M, Şahin MK, Somel M, Yanchukov A. Single hybrid population but multiple parental individuals at the origin of parthenogenetic rock lizards Darevskia sapphirina and D. bendimahiensis Schmidtler, & Eiselt Darevsky (1994) endemic to the area of Lake Van in East Turkey. Mol Phylogenet Evol 2023; 189:107925. [PMID: 37709182 DOI: 10.1016/j.ympev.2023.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Among vertebrates, obligate parthenogenesis is only found in Squamata, where it always has a hybrid origin and a few lizard genera contain most of the known hybridogenous parthenogenetic taxa. Parthenogenesis thus seems to be pre-conditioned at the genus level, but it is not clear how often the encounter between two parental sexually reproducing species can result in the parthenogenetic offspring, nor whether the success of such hybridization event requires certain conditions or the specific time frame. To address this question, we studied the rock lizards of genus Darevskia, where a pair of parental species, D. valentini and D. raddei, as well as their parthenogenetic daughter species D. bendimahiensis and D. sapphirina, are found in close proximity NE of the Lake Van in East Anatolia. Using ddRAD-seq genotyping on 19 parental and 18 hybrid individuals, we found that (i) all parthenogenetic individuals from both D. bendimahiensis and D. sapphirina have a monophyletic origin tracing back to a single initial hybrid population, but their current genetic variation is geographically structured; (ii) unlike the most probable paternal ancestor, the genetically closest extant population of the maternal ancestor is not the geographically nearest one; and (iii) in the parthenogens, about 1% of loci carry multiple haplotypes, frequently differentiated by multiple substitutions. This pattern, in addition to biases in the relative frequency of haplotypes of maternal and paternal origin, does not appear compatible with a scenario of the entire parthenogenic clonal population having descended from a single pair of parental individuals. Instead, the data suggest that multiple parental individual ancestries still persist in the parthenogenetic gene pool. This supports the notion that although hybridization leading to parthenogenesis is generally rare at the level of species, it may be more common at the individual/population level once the right conditions are met.
Collapse
Affiliation(s)
- Meriç Erdolu
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | | | - Mehmet Somel
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Alexey Yanchukov
- Zonguldak Bülent Ecevit University, Faculty of Science, Department of Biology, Zonguldak, Turkey.
| |
Collapse
|
5
|
Zhao YJ, Yin GS, Gong X. RAD-sequencing improves the genetic characterization of a threatened tree peony ( Paeonia ludlowii) endemic to China: Implications for conservation. PLANT DIVERSITY 2023; 45:513-522. [PMID: 37936813 PMCID: PMC10625974 DOI: 10.1016/j.pld.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2023]
Abstract
Compared with traditional genetic markers, genomic approaches have proved valuable to the conservation of endangered species. Paeonia ludlowii having rarely and pure yellow flowers, is one of the world's most famous tree peonies. However, only several wild populations remain in the Yarlung Zangbo Valley (Nyingchi and Shannan regions, Xizang) in China due to increasing anthropogenic impact on the natural habitats. We used genome-wide single nucleotide polymorphisms to elucidate the spatial pattern of genetic variation, population structure and demographic history of P. ludlowii from the fragmented region comprising the entire range of this species, aiming to provide a basis for conserving the genetic resources of this species. Unlike genetic uniformity among populations revealed in previous studies, we found low but varied levels of intra-population genetic diversity, in which lower genetic diversity was detected in the population in Shannan region compared to those in Nyingzhi region. These spatial patterns may be likely associated with different population sizes caused by micro-environment differences in these two regions. Additionally, low genetic differentiation among populations (Fst = 0.0037) were detected at the species level. This line of evidence, combined with the result of significant genetic differentiation between the two closest populations and lack of isolation by distance, suggested that shared ancestry among now remnant populations rather than contemporary genetic connectivity resulted in subtle population structure. Demographic inference suggested that P. ludlowii probably experienced a temporal history of sharp population decline during the period of Last Glacial Maximum, and a subsequent bottleneck event resulting from prehistoric human activities on the Qinghai-Tibet Plateau. All these events, together with current habitat fragment and excavation might contribute to the endangered status of P. ludlowii. Our study improved the genetic characterization of the endangered tree peony (P. ludlowii) in China, and these genetic inferences should be considered when making different in situ and ex situ conservation actions for P. ludlowii in this evolutionary hotspot region.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
| | - Gen-Shen Yin
- Kunming University, Institute of Agriculture and Life Sciences, Kunming 650214, Yunnan, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
| |
Collapse
|
6
|
Li R, Huang Y, Yang X, Su M, Xiong H, Dai Y, Wu W, Pei X, Yuan Q. Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:2876. [PMID: 37571029 PMCID: PMC10421310 DOI: 10.3390/plants12152876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Shanlan upland rice (Oryza sativa L.) is a unique upland rice variety cultivated by the Li nationality for a long time, which has good drought resistance and high utilization value in drought resistance breeding. To explore the origin of Shanlan upland rice and its genetic relationship with upland rice from other geographical sources, 214 upland rice cultivars from Southeast Asia and five provinces (regions) in southern China were used to study genetic diversity by using SSR markers. Twelve SSR primers were screened and 164 alleles (Na) were detected, with the minimum number of alleles being 8 and the maximum number of alleles being 23, with an average of 13.667. The analysis of genetic diversity and analysis of molecular variance (AMOVA) showed that the differences among the materials mainly came from the individuals of upland rice. The results of gene flow and genetic differentiation revealed the relationship between the upland rice populations, and Hainan Shanlan upland rice presumably originated from upland rice in Guangdong province, and some of them were genetically differentiated from Hunan upland rice. It can be indirectly proved that the Li nationality in Hainan is a descendant of the ancient Baiyue ethnic group, which provides circumstantial evidence for the migration history of the Li nationality in Hainan, and also provides basic data for the advanced protection of Shanlan upland rice, and the innovative utilization of germplasm resources.
Collapse
Affiliation(s)
- Rongju Li
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Yinling Huang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Xinsen Yang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Meng Su
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Huaiyang Xiong
- Hainan Guangling High-Tech Industrial Co., Ltd., Lingshui 572400, China; (H.X.); (Y.D.)
| | - Yang Dai
- Hainan Guangling High-Tech Industrial Co., Ltd., Lingshui 572400, China; (H.X.); (Y.D.)
| | - Wei Wu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianhua Yuan
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| |
Collapse
|
7
|
Barley AJ, Nieto-Montes de Oca A, Manríquez-Morán NL, Thomson RC. The evolutionary network of whiptail lizards reveals predictable outcomes of hybridization. Science 2022; 377:773-777. [PMID: 35951680 DOI: 10.1126/science.abn1593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hybridization between diverging lineages is associated with the generation and loss of species diversity, introgression, adaptation, and changes in reproductive mode, but it is unknown when and why it results in these divergent outcomes. We estimate a comprehensive evolutionary network for the largest group of unisexual vertebrates and use it to understand the evolutionary outcomes of hybridization. Our results show that rates of introgression between species decrease with time since divergence and suggest that species must attain a threshold of evolutionary divergence before hybridization results in transitions to unisexuality. Rates of hybridization also predict genome-wide patterns of genetic diversity in whiptail lizards. These results distinguish among models for hybridization that have not previously been tested and suggest that the evolutionary outcomes can be predictable.
Collapse
Affiliation(s)
- Anthony J Barley
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA.,School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| | - Adrián Nieto-Montes de Oca
- Laboratorio de Herpetología and Museo de Zoología Alfonso L. Herrera, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcadía Coyoacán, Ciudad de México, México
| | - Norma L Manríquez-Morán
- Laboratorio de Sistemática Molecular, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Colonia Carboneras, Mineral de la Reforma, Hidalgo, México
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Raya‐García E, Suazo‐Ortuño I, García‐Andrade AB, Solís‐Guzmán MG, Pérez‐Rodríguez R. Assessing evolutionary history and species boundaries in a polymorphic tropical lizard, the
Aspidoscelis lineattissimus
species complex (Squamata, Teiidae). ZOOL SCR 2022. [DOI: 10.1111/zsc.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ernesto Raya‐García
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán Mexico
| | - Ireri Suazo‐Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán Mexico
| | | | - María Gloria Solís‐Guzmán
- Laboratorio de Biología Acuática, Facultad de Biología Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán Mexico
| | - Rodolfo Pérez‐Rodríguez
- Laboratorio de Biología Acuática, Facultad de Biología Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán Mexico
| |
Collapse
|
9
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|