1
|
Gompert Z, DeRaad DA, Buerkle CA. A Next Generation of Hierarchical Bayesian Analyses of Hybrid Zones Enables Model-Based Quantification of Variation in Introgression in R. Ecol Evol 2024; 14:e70548. [PMID: 39583044 PMCID: PMC11582016 DOI: 10.1002/ece3.70548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Hybrid zones, where genetically distinct groups of organisms meet and interbreed, offer valuable insights into the nature of species and speciation. Here, we present a new R package, bgchm, for population genomic analyses of hybrid zones. This R package extends and updates the existing bgc software and combines Bayesian analyses of hierarchical genomic clines with Bayesian methods for estimating hybrid indexes, interpopulation ancestry proportions, and geographic clines. Compared to existing software, bgchm offers enhanced efficiency through Hamiltonian Monte Carlo sampling and the ability to work with genotype likelihoods combined with a hierarchical Bayesian approach, enabling inference for diverse types of genetic data sets. The package also facilitates the quantification of introgression patterns across genomes, which is crucial for understanding reproductive isolation and speciation genetics. We first describe the models underlying bgchm and then provide an overview of the R package and illustrate its use through the analysis of simulated and empirical data sets. We show that bgchm generates accurate estimates of model parameters under a variety of conditions, especially when the genetic loci analyzed are highly ancestry informative. This includes relatively robust estimates of genome-wide variability in clines, which has not been the focus of previous models and methods. We also illustrate how both selection and genetic drift contribute to variability in introgression among loci and how additional information can be used to help distinguish these contributions. We conclude by describing the promises and limitations of bgchm, comparing bgchm to other software for genomic cline analyses, and identifying areas for fruitful future development.
Collapse
Affiliation(s)
| | - Devon A. DeRaad
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | |
Collapse
|
2
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Rieseberg L, Warschefsky E, Burton J, Huang K, Sibbett B. Editorial 2024. Mol Ecol 2024; 33:e17239. [PMID: 38146175 DOI: 10.1111/mec.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Affiliation(s)
- Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Emily Warschefsky
- William L. Brown Center, Missouri Botanical Garden, Saint Louis, MO, USA
| | - Jade Burton
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Sibbett
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| |
Collapse
|
4
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
5
|
Bock DG, Liu J, Novikova P, Rieseberg LH. Long-read sequencing in ecology and evolution: Understanding how complex genetic and epigenetic variants shape biodiversity. Mol Ecol 2023; 32:1229-1235. [PMID: 36855925 DOI: 10.1111/mec.16884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Affiliation(s)
- Dan G Bock
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianquan Liu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Polina Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Loren H Rieseberg
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
DeVos TB, Bock DG, Kolbe JJ. Rapid introgression of non-native alleles following hybridization between a native Anolis lizard species and a cryptic invader across an urban landscape. Mol Ecol 2023; 32:2930-2944. [PMID: 36811388 DOI: 10.1111/mec.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced-representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non-native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non-native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non-native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non-native genetic material even in the absence of ongoing immigration, indicating that selection favouring non-native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non-native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long-term survival of native populations otherwise unable to adapt to anthropogenically mediated global change.
Collapse
Affiliation(s)
- Tyler B DeVos
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dan G Bock
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
8
|
Ruggieri AA, Livraghi L, Lewis JJ, Evans E, Cicconardi F, Hebberecht L, Ortiz-Ruiz Y, Montgomery SH, Ghezzi A, Rodriguez-Martinez JA, Jiggins CD, McMillan WO, Counterman BA, Papa R, Van Belleghem SM. A butterfly pan-genome reveals that a large amount of structural variation underlies the evolution of chromatin accessibility. Genome Res 2022; 32:1862-1875. [PMID: 36109150 PMCID: PMC9712634 DOI: 10.1101/gr.276839.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/13/2022] [Indexed: 01/16/2023]
Abstract
Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual Heliconius charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis-regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for sites with significant resemblance to several transcription factor binding sites with known function in neuron development in Drosophila We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.
Collapse
Affiliation(s)
- Angelo A Ruggieri
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan PR 00931, Puerto Rico
| | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092 Panamá, Panama
| | - James J Lewis
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan PR 00931, Puerto Rico
| | - Francesco Cicconardi
- School of Biological Sciences, Bristol University, Bristol BS8 1QU, United Kingdom
| | - Laura Hebberecht
- School of Biological Sciences, Bristol University, Bristol BS8 1QU, United Kingdom
| | - Yadira Ortiz-Ruiz
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan PR 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, Bristol BS8 1QU, United Kingdom
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan PR 00931, Puerto Rico
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092 Panamá, Panama
| | - Brian A Counterman
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan PR 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan PR 00931, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|