1
|
Williamson SA, Hoover AL, Evans RG, Shillinger GL, Bailey H, Bruno RS, Bandimere A, Reina RD. Effects of postovipositional hypoxia and hyperoxia on leatherback turtle reproductive success and hatchling performance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:939-950. [PMID: 37545193 DOI: 10.1002/jez.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Leatherback egg clutches typically experience lower hatching success (~50%) than those of other sea turtle species (>70%). The majority of embryonic death (>50%) occurs at early stages of development, possibly because embryos fail to break preovipositional embryonic arrest after oviposition. The embryonic arrest is maintained by hypoxia in the oviduct and following oviposition increased availability of oxygen is the trigger that breaks arrest in all turtle species studied to date. We conducted an ex situ incubator experiment and an in situ hatchery experiment to examine the influence of oxygen availability on hatching success and hatchling traits in leatherbacks. After oviposition, eggs (n = 1005) were incubated in either normoxia (21% O2 ), hyperoxia (32%-42% O2 ) for 5 days, or hypoxia (1% O2 ) for 3 or 5 days. As with other turtles, hypoxic incubation maintained embryos in arrest, equivalent to the time spent in hypoxia. However, extending arrest for 5 days resulted in greater early-stage death and a significant decrease in hatching success (4% 5-day hypoxia vs. 72% normoxia). Eggs placed in incubators had greater hatching success than those placed into hatchery nests (67% vs. 47%, respectively). We found no impact of hyperoxia on the stage of embryonic death, hatching success, hatchling phenotype, exercise performance, or early dispersal. Our findings indicate that delayed nesting and the subsequent extension of embryonic arrest may negatively impact embryonic development and therefore the reproductive success of leatherbacks. They also indicate that incubation under hyperoxic conditions is unlikely to be a useful method to improve hatching success in this species.
Collapse
Affiliation(s)
- Sean A Williamson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Aimee L Hoover
- Upwell, Monterey, California, USA
- Chesapeake Biological Laboratory, University of Maryland Centre for Environmental Science, Solomons, Maryland, USA
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Helen Bailey
- Chesapeake Biological Laboratory, University of Maryland Centre for Environmental Science, Solomons, Maryland, USA
| | - Renato Saragoça Bruno
- Turtle Love, Barra de Parismina, Limon, Costa Rica
- Pacuare Reserve, Ecology Project International, Limon, Costa Rica
| | | | - Richard D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Adams DM, Williamson SA, Evans RG, Reina RD. Increasing hypoxia progressively slows early embryonic development in an oviparous reptile, the green turtle, Chelonia mydas. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220709. [PMID: 36061518 PMCID: PMC9428527 DOI: 10.1098/rsos.220709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Green turtle (Chelonia mydas) embryos are in an arrested state of development when the eggs are laid, but in the presence of oxygen, arrest is broken and development resumes within 12-16 h. However, the precise oxygen level at which embryos break arrest and continue development is not known. To better understand the impact of oxygen concentration on breaking of arrest and early embryonic development, we incubated freshly laid eggs of the green sea turtle for three days at each of six different oxygen concentrations (less than or equal to 1%, 3%, 5%, 7%, 9% and 21%) and monitored the appearance and growth of white spots on the shell, indicative of embryonic development. As reported previously, white spots did not develop on eggs incubated in anoxia (less than or equal to 1% oxygen). For all other treatments, mean time to white spot detection and white spot growth rate varied inversely with oxygen concentration. In nearly all cases the difference between eggs at different oxygen levels was statistically significant (p ≤ 0.05). This suggests that sea turtle embryonic development may respond to oxygen in a dose-dependent manner. Our results indicate that the development of green turtle embryos may be slowed if they are exposed to the most hypoxic conditions reported in mature natural nests.
Collapse
Affiliation(s)
| | | | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
- Pre-clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|