1
|
Walker NS, Isma L, García N, True A, Walker T, Watkins J. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Integr Comp Biol 2024; 64:1141-1153. [PMID: 39054304 DOI: 10.1093/icb/icae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Global ocean warming is affecting keystone species distributions and fitness, resulting in the degradation of marine ecosystems. Coral reefs are one of the most diverse and productive marine ecosystems. However, reef-building corals, the foundational taxa of coral reef ecosystems, are severely threatened by thermal stress. Models predict 40-80% of global coral cover will be lost by 2100, which highlights the urgent need for widespread interventions to preserve coral reef functionality. There has been extensive research on coral thermal stress and resilience, but 95% of studies have focused on adult corals. It is necessary to understand stress during early life stages (larvae, recruits, and juveniles), which will better inform selective breeding programs that aim to replenish reefs with resilient stock. In this review, we surveyed the literature on coral thermal resilience in early life stages, and we highlight that studies have been conducted on relatively few species (commonly Acropora spp.) and in limited regions (mainly Australia). Reef-building coral management will be improved by comprehensively understanding coral thermal resilience and fitness across life stages, as well as in diverse species and regions.
Collapse
Affiliation(s)
- Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Mānoa, HI, USA 96744
| | - Lys Isma
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Nepsis García
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Aliyah True
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Taylor Walker
- Department of BioSciences, Rice University, Houston, TX, USA 77005
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA 94720
| | - Joyah Watkins
- Department of BioSciences, Rice University, Houston, TX, USA 77005
| |
Collapse
|
2
|
Glass BH, Jones KG, Ye AC, Dworetzky AG, Barott KL. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 2023; 11:e16574. [PMID: 38077426 PMCID: PMC10704996 DOI: 10.7717/peerj.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Across diverse taxa, sublethal exposure to abiotic stressors early in life can lead to benefits such as increased stress tolerance upon repeat exposure. This phenomenon, known as hormetic priming, is largely unexplored in early life stages of marine invertebrates, which are increasingly threatened by anthropogenic climate change. To investigate this phenomenon, larvae of the sea anemone and model marine invertebrate Nematostella vectensis were exposed to control (18 °C) or elevated (24 °C, 30 °C, 35 °C, or 39 °C) temperatures for 1 h at 3 days post-fertilization (DPF), followed by return to control temperatures (18 °C). The animals were then assessed for growth, development, metabolic rates, and heat tolerance at 4, 7, and 11 DPF. Priming at intermediately elevated temperatures (24 °C, 30 °C, or 35 °C) augmented growth and development compared to controls or priming at 39 °C. Indeed, priming at 39 °C hampered developmental progression, with around 40% of larvae still in the planula stage at 11 DPF, in contrast to 0% for all other groups. Total protein content, a proxy for biomass, and respiration rates were not significantly affected by priming, suggesting metabolic resilience. Heat tolerance was quantified with acute heat stress exposures, and was significantly higher for animals primed at intermediate temperatures (24 °C, 30 °C, or 35 °C) compared to controls or those primed at 39 °C at all time points. To investigate a possible molecular mechanism for the observed changes in heat tolerance, the expression of heat shock protein 70 (HSP70) was quantified at 11 DPF. Expression of HSP70 significantly increased with increasing priming temperature, with the presence of a doublet band for larvae primed at 39 °C, suggesting persistent negative effects of priming on protein homeostasis. Interestingly, primed larvae in a second cohort cultured to 6 weeks post-fertilization continued to display hormetic growth responses, whereas benefits for heat tolerance were lost; in contrast, negative effects of short-term exposure to extreme heat stress (39 °C) persisted. These results demonstrate that some dose-dependent effects of priming waned over time while others persisted, resulting in heterogeneity in organismal performance across ontogeny following priming. Overall, these findings suggest that heat priming may augment the climate resilience of marine invertebrate early life stages via the modulation of key developmental and physiological phenotypes, while also affirming the need to limit further anthropogenic ocean warming.
Collapse
Affiliation(s)
- Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn G. Jones
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela C. Ye
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna G. Dworetzky
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Jiang L, Liu CY, Cui G, Huang LT, Yu XL, Sun YF, Tong HY, Zhou GW, Yuan XC, Hu YS, Zhou WL, Aranda M, Qian PY, Huang H. Rapid shifts in thermal reaction norms and tolerance of brooded coral larvae following parental heat acclimation. Mol Ecol 2023; 32:1098-1116. [PMID: 36528869 DOI: 10.1111/mec.16826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guoxin Cui
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - You-Fang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hao-Ya Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guo-Wei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Yi-Si Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wen-Liang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Manuel Aranda
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|