1
|
Pereira H, Chakarov N, Hoffman JI, Rinaud T, Ottensmann M, Gladow KP, Tobias B, Caspers BA, Maraci Ö, Krüger O. Early-life factors shaping the gut microbiota of Common buzzard nestlings. Anim Microbiome 2024; 6:27. [PMID: 38745254 DOI: 10.1186/s42523-024-00313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Exploring the dynamics of gut microbiome colonisation during early-life stages is important for understanding the potential impact of microbes on host development and fitness. Evidence from model organisms suggests a crucial early-life phase when shifts in gut microbiota can lead to immune dysregulation and reduced host condition. However, our understanding of gut microbiota colonisation in long-lived vertebrates, especially during early development, remains limited. We therefore used a wild population of common buzzard nestlings (Buteo buteo) to investigate connections between the early-life gut microbiota colonisation, environmental and host factors. RESULTS We targeted both bacterial and eukaryotic microbiota using the 16S and 28S rRNA genes. We sampled the individuals during early developmental stages in a longitudinal design. Our data revealed that age significantly affected microbial diversity and composition. Nest environment was a notable predictor of microbiota composition, with particularly eukaryotic communities differing between habitats occupied by the hosts. Nestling condition and infection with the blood parasite Leucocytozoon predicted microbial community composition. CONCLUSION Our findings emphasise the importance of studying microbiome dynamics to capture changes occurring during ontogeny. They highlight the role of microbial communities in reflecting host health and the importance of the nest environment for the developing nestling microbiome. Overall, this study contributes to understanding the complex interplay between microbial communities, host factors, and environmental variables, and sheds light on the ecological processes governing gut microbial colonisation during early-life stages.
Collapse
Affiliation(s)
- Hugo Pereira
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany.
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Department of Evolutionary Population Genetics, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Tony Rinaud
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Meinolf Ottensmann
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Kai-Philipp Gladow
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Busche Tobias
- Medical School East Westphalia-Lippe & Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, NRW, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| |
Collapse
|
2
|
Aželytė J, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Wu-Chuang A, Žiegytė R, Mateos-Hernández L, Obregón D, Cabezas-Cruz A, Palinauskas V. Impact of Plasmodium relictum Infection on the Colonization Resistance of Bird Gut Microbiota: A Preliminary Study. Pathogens 2024; 13:91. [PMID: 38276164 PMCID: PMC10819382 DOI: 10.3390/pathogens13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.
Collapse
Affiliation(s)
- Justė Aželytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| | - Apolline Maitre
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), F-20250 Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, F-20250 Corte, France
| | - Lianet Abuin-Denis
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, Havana CU-10600, Cuba
| | - Elianne Piloto-Sardiñas
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas CU-32700, Cuba
| | - Alejandra Wu-Chuang
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| | - Lourdes Mateos-Hernández
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Alejandro Cabezas-Cruz
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Vaidas Palinauskas
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| |
Collapse
|
3
|
Rieseberg L, Warschefsky E, Burton J, Huang K, Sibbett B. Editorial 2024. Mol Ecol 2024; 33:e17239. [PMID: 38146175 DOI: 10.1111/mec.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Affiliation(s)
- Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Emily Warschefsky
- William L. Brown Center, Missouri Botanical Garden, Saint Louis, MO, USA
| | - Jade Burton
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Sibbett
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| |
Collapse
|
4
|
Gillespie RG, Bik HM, Hickerson MJ, Krehenwinkel H, Overcast I, Rominger AJ. Insights into Ecological & Evolutionary Processes via community metabarcoding. Mol Ecol 2023; 32:6083-6092. [PMID: 37999451 DOI: 10.1111/mec.17208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Rosemary G Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Holly M Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Michael J Hickerson
- Graduate Center of the City University of New York, New York City, New York, USA
- Biology Department, City College of New York, New York City, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
| | | | - Isaac Overcast
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- Department of Vertebrate Zoology, Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
- California Academy of Sciences, San Francisco, California, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
5
|
Navine AK, Paxton KL, Paxton EH, Hart PJ, Foster JT, McInerney N, Fleischer RC, Videvall E. Microbiomes associated with avian malaria survival differ between susceptible Hawaiian honeycreepers and sympatric malaria-resistant introduced birds. Mol Ecol 2023; 32:6659-6670. [PMID: 36281504 DOI: 10.1111/mec.16743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Of the estimated 55 Hawaiian honeycreepers (subfamily Carduelinae) only 17 species remain, nine of which the International Union for Conservation of Nature considers endangered. Among the most pressing threats to honeycreeper survival is avian malaria, caused by the introduced blood parasite Plasmodium relictum, which is increasing in distribution in Hawai'i as a result of climate change. Preventing further honeycreeper decline will require innovative conservation strategies that confront malaria from multiple angles. Research on mammals has revealed strong connections between gut microbiome composition and malaria susceptibility, illuminating a potential novel approach to malaria control through the manipulation of gut microbiota. One honeycreeper species, Hawai'i 'amakihi (Chlorodrepanis virens), persists in areas of high malaria prevalence, indicating they have acquired some level of immunity. To investigate if avian host-specific microbes may be associated with malaria survival, we characterized cloacal microbiomes and malaria infection for 174 'amakihi and 172 malaria-resistant warbling white-eyes (Zosterops japonicus) from Hawai'i Island using 16S rRNA gene metabarcoding and quantitative polymerase chain reaction. Neither microbial alpha nor beta diversity covaried with infection, but 149 microbes showed positive associations with malaria survivors. Among these were Escherichia and Lactobacillus spp., which appear to mitigate malaria severity in mammalian hosts, revealing promising candidates for future probiotic research for augmenting malaria immunity in sensitive endangered species.
Collapse
Affiliation(s)
- Amanda K Navine
- Biology Department, University of Hawai'i at Hilo, Hilo, Hawaii, USA
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Kristina L Paxton
- Hawai'i Cooperative Studies Unit, University of Hawai'i at Hilo, Hawai'i National Park, Hawaii, USA
| | - Eben H Paxton
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai'i National Park, Hawaii, USA
| | - Patrick J Hart
- Biology Department, University of Hawai'i at Hilo, Hilo, Hawaii, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Nancy McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Garrigós M, Garrido M, Panisse G, Veiga J, Martínez-de la Puente J. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens 2023; 12:1287. [PMID: 38003752 PMCID: PMC10675824 DOI: 10.3390/pathogens12111287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The flavivirus West Nile virus (WNV) naturally circulates between mosquitoes and birds, potentially affecting humans and horses. Different species of mosquitoes play a role as vectors of WNV, with those of the Culex pipiens complex being particularly crucial for its circulation. Different biotic and abiotic factors determine the capacity of mosquitoes for pathogen transmission, with the mosquito gut microbiota being recognized as an important one. Here, we review the published studies on the interactions between the microbiota of the Culex pipiens complex and WNV infections in mosquitoes. Most articles published so far studied the interactions between bacteria of the genus Wolbachia and WNV infections, obtaining variable results regarding the directionality of this relationship. In contrast, only a few studies investigate the role of the whole microbiome or other bacterial taxa in WNV infections. These studies suggest that bacteria of the genera Serratia and Enterobacter may enhance WNV development. Thus, due to the relevance of WNV in human and animal health and the important role of mosquitoes of the Cx. pipiens complex in its transmission, more research is needed to unravel the role of mosquito microbiota and those factors affecting this microbiota on pathogen epidemiology. In this respect, we finally propose future lines of research lines on this topic.
Collapse
Affiliation(s)
- Marta Garrigós
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Mario Garrido
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Guillermo Panisse
- CEPAVE—Centro de Estudios Parasitológicos y de Vectores CONICET-UNLP, La Plata 1900, Argentina;
| | - Jesús Veiga
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|