1
|
Masson S, Chialva M, Bongiovanni D, Adamo M, Stefanini I, Lanfranco L. A systematic scoping review reveals that geographic and taxonomic patterns influence the scientific and societal interest in urban soil microbial diversity. ENVIRONMENTAL MICROBIOME 2025; 20:17. [PMID: 39905522 DOI: 10.1186/s40793-025-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Urban green areas provide multiple ecosystem services in cities, mitigating environmental risks and providing a healthier environment for humans. Even if urban ecology has become popular in the last decade, the soil environment with its microbiota, which sustains many other biodiversity layers, remains overlooked. Here, a comprehensive database of scientific papers published in the last 30 years investigating different aspects of soil microbial diversity was built and systematically reviewed. The aim was to identify the taxa, experimental methods and geographical areas that have been investigated, and to highlight gaps in knowledge and research prospects. Our results show that current knowledge on urban soil microbiota remains incomplete, mainly due to the lack of publications on functional aspects, and is biased, in terms of investigated taxa, with most studies focused on Prokaryotes, and geographic representativeness, with the interest focused on a few large cities in the Northern hemisphere. By coupling bibliometrics with statistical modelling we found that soil microbial traits such as biomass and respiration and omics techniques attract the interest of the scientific community while multi-taxa and time-course studies appeal more to the general public.
Collapse
Affiliation(s)
- Simon Masson
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Davide Bongiovanni
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Martino Adamo
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy.
| |
Collapse
|
2
|
Fang M, Lu G, Zhang S, Liang W. Urbanized lands degrade surrounding grasslands by deteriorating the interactions between plants and soil microbiome. Front Microbiol 2025; 15:1505916. [PMID: 39834377 PMCID: PMC11743986 DOI: 10.3389/fmicb.2024.1505916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
To mitigate overgrazing on grasslands, towns were constructed in some pastoral regions of China to relocate pastoralists. Nevertheless, whether and how the urbanized lands impact the surrounding grassland ecosystem remains unclear. We assessed the impacts of urbanized lands on the plant and soil interactions within the surrounding grasslands in order to ensure an eco-sustainable pastoralist relocation. The town with 1 km radius was selected as urbanization sample and a grassland with 1 km radius was selected as nature grassland sample. Plants and soil were investigated in nature grassland (NG), and areas 1 km (T-1 km), 2 km (T-2 km), and 3 km (T-3 km) from the center of the town. In T-1 km and T-2 km, compared to the NG, plant diversity, the abundance of dominant plant species, the abundance of soil wood saprotroph fungi, soil water content (SWC), and total organic carbon (TOC) decreased, while soil plant pathogen fungi, soil pH, and total phosphatase (TP) increased. Conversely, no such changes were observed in T-3 km. The results of Mantel test and Partial least squares path model suggest that the decrease in soil TOC and SWC, along with the increase in pH and TP in T-1 km and T-2 km, lead to a decline in wood saprotroph fungi and an increase in plant pathogen fungi, ultimately resulting in reductions in plant diversity and the abundance of dominant plant species. These results indicate that towns in pastoral areas can lead to surrounding grassland degradation by deteriorating the plant-soil interactions.
Collapse
Affiliation(s)
- Mengchao Fang
- College of Life and Environment Science, Minzu University of China, Beijing, China
| | - Guang Lu
- College of Life and Environment Science, Minzu University of China, Beijing, China
| | - Shuping Zhang
- College of Life and Environment Science, Minzu University of China, Beijing, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
3
|
Maestre J, Jarma D, Williams E, Wylie D, Horner S, Kinney K. Microbial communities in rural and urban homes and their relationship to surrounding land use, household characteristics, and asthma status. BUILDING AND ENVIRONMENT 2024; 266:112014. [DOI: 10.1016/j.buildenv.2024.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Parajuli A, Mäkelä I, Roslund MI, Ringqvist E, Manninen J, Sun Y, Nurminen N, Oikarinen S, Laitinen OH, Hyöty H, Flodström-Tullberg M, Sinkkonen A. Production, analysis, and safety assessment of a soil and plant-based natural material with microbiome- and immune-modulatory effects. Methods 2024; 231:94-102. [PMID: 39306218 DOI: 10.1016/j.ymeth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed. Multiple batches of BDB were manufactured and microbial composition analysed using 16S rRNA gene sequencing. We observed a consistently high alpha diversity and relative abundance of bacteria normally found in soil and vegetation. We also found that inactivation of BDB by autoclaving effectively inactivates human and murine bacteria, viruses and parasites. Finally, we demonstrate that experimental mice prone to develop IMIDs (non-obese diabetic, NOD, mouse model) can be exposed to BDB without causing adverse effects on animal health and welfare. Our study provides insights into a potentially safe, sustainable, and cost-effective approach for simulating exposure to natural microbiota, which could have substantial impacts on health and socio-economic factors.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Iida Mäkelä
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Marja I Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Juulia Manninen
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Yan Sun
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland.
| |
Collapse
|
5
|
Magura T, Mizser S, Horváth R, Tóth M, Lövei GL. Urbanization impoverishes taxonomic but not functional diversity of the gut microbiota in a forest specialist ground beetle, Carabus convexus. Sci Rep 2024; 14:25546. [PMID: 39461984 PMCID: PMC11513054 DOI: 10.1038/s41598-024-75864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Symbiotic microorganisms living in the digestive tracts of invertebrates can be crucial in host-symbiont interactions, as they play fundamental roles in important biological processes. Urbanization-related habitat alteration and disturbance, however, considerably affect the environment of host insects, from which their gut microbiota is derived. Still, relatively few studies, all on flying insects, have assessed the impact of urbanization on the gut microbiota of insects. Here, we compared the gut bacterial microbiota in rural and urban individuals of a flightless ground beetle, Carabus convexus, using next generation sequencing. Across the 48 gut samples we identified 1163 different bacterial operational taxonomic units (OTUs), forming significantly different gut bacterial communities in rural versus urban beetles. The taxonomic diversity of the gut bacterial microbiota expressed by the Hill numbers was significantly higher in rural than urban individuals, as well as in rural males vs. females. Smaller differences were found in functional diversity, assessed by the Rao's quadratic entropy which was marginally significantly higher in urban than rural beetles.
Collapse
Affiliation(s)
- Tibor Magura
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary.
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary.
| | - Szabolcs Mizser
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary
| | - Roland Horváth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary
| | - Mária Tóth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, Debrecen, 4032, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary
| | - Gábor L Lövei
- HUN-REN-UD Anthropocene Ecology Research Group, Egyetem Sq. 1, Debrecen, 4032, Hungary
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, 4200, Slagelse, Denmark
| |
Collapse
|
6
|
García-Estrada DA, Selem-Mojica N, Martínez-Hernández A, Lara-Reyna J, Dávila-Ramos S, Verdel-Aranda K. Diversity of bacterial communities in wetlands of Calakmul Biosphere Reserve: a comparative analysis between conserved and semi-urbanized zones in pre-Mayan Train era. BMC Microbiol 2024; 24:376. [PMID: 39342129 PMCID: PMC11437969 DOI: 10.1186/s12866-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.
Collapse
Affiliation(s)
- David Alberto García-Estrada
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | | | - Joel Lara-Reyna
- Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Karina Verdel-Aranda
- Conahcyt-Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
- Present address: Tecnológico Nacional de México-Instituto Tecnológico de Chiná, Chiná, Campeche, Mexico.
| |
Collapse
|
7
|
Sánchez-Marañón M, Ortega R, Pulido-Fernández M, Barrena-González J, Lavado-Contador F, Miralles I, García-Salcedo JA, Soriano M. Compositional and functional analysis of the bacterial community of Mediterranean Leptosols under livestock grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171811. [PMID: 38508263 DOI: 10.1016/j.scitotenv.2024.171811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The composition and functioning of soil bacterial communities, as well as their responses to multiple perturbations, are not well understood in the terrestrial ecosystems. Our study focuses on the bacterial community of erosive and poorly developed soils (Haplic Leptosols) in Mediterranean rangelands of Extremadura (W Spain) with different grazing intensities. Leptosols from similar natural conditions were selected and sampled at two depths to determine the soil properties as well as the structure and activity of bacterial communities. As grazing intensified, the soil C and N content increased, as did the number and diversity of bacteria, mainly of fast-growing lineages. Aridibacter, Acidobacteria Gp6 and Gp10, Gemmatimonas, and Segetibacter increased their abundance along the grazing-intensity gradient. Firmicutes such as Romboutsia and Turicibacter from livestock microbiome also increased. In functional terms, the KEGG pathways enriched in the soils with moderate and high grazing intensity were ABC transporters, DNA repair and recombination proteins, the two-component system, and the degradation of xenobiotics. All of these proved to be related to stronger cell division and response mechanisms to environmental stressors such as drought, warming, toxic substances, and nutrient deprivation. Consequently, the bacterial community was affected by grazing, but appeared to adapt and counteract the effects of a high grazing intensity. Therefore, a clearly detrimental effect of grazing was not detected in the bacterial community of the soils studied.
Collapse
Affiliation(s)
- Manuel Sánchez-Marañón
- Department of Soil Science and Agricultural Chemistry, Science Faculty, University of Granada, E-18071 Granada, Spain
| | - Raúl Ortega
- Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Ctra. Sacramento s/n, E-04120 Almería, Spain
| | - Manuel Pulido-Fernández
- Grupo de Investigación GeoAmbiental, Universidad de Extremadura, Avenida de la Universidad s/n, E-10071 Cáceres, Spain
| | - Jesús Barrena-González
- Grupo de Investigación GeoAmbiental, Universidad de Extremadura, Avenida de la Universidad s/n, E-10071 Cáceres, Spain
| | - Francisco Lavado-Contador
- Grupo de Investigación GeoAmbiental, Universidad de Extremadura, Avenida de la Universidad s/n, E-10071 Cáceres, Spain
| | - Isabel Miralles
- Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Ctra. Sacramento s/n, E-04120 Almería, Spain
| | - José A García-Salcedo
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114 - E-18016 Granada, Spain; Microbiology Unit, University Hospital Virgen de las Nieves, E-18014 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Soriano
- Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Ctra. Sacramento s/n, E-04120 Almería, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114 - E-18016 Granada, Spain
| |
Collapse
|
8
|
Mo L, Zanella A, Squartini A, Ranzani G, Bolzonella C, Concheri G, Pindo M, Visentin F, Xu G. Anthropogenic vs. natural habitats: Higher microbial biodiversity pays the trade-off of lower connectivity. Microbiol Res 2024; 282:127651. [PMID: 38430888 DOI: 10.1016/j.micres.2024.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in β-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.
Collapse
Affiliation(s)
- Lingzi Mo
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Augusto Zanella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Andrea Squartini
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giulia Ranzani
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Cristian Bolzonella
- Department Land Environment Agriculture and Forestry, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giuseppe Concheri
- Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Massimo Pindo
- Fondazione Edmund Mach, San Michele all'Adige 38098, Italy.
| | - Francesca Visentin
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy.
| | - Guoliang Xu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Sanchez-Tello JD, Corrales A. Ectomycorrhizal fungal communities in natural and urban ecosystems: Quercus humboldtii as a study case in the tropical Andes. MYCORRHIZA 2024; 34:45-55. [PMID: 38483629 PMCID: PMC10998789 DOI: 10.1007/s00572-024-01140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Worldwide urban landscapes are expanding because of the growing human population. Urban ecosystems serve as habitats to highly diverse communities. However, studies focusing on the diversity and structure of ectomycorrhizal communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is an ectomycorrhizal tree thriving in tropical montane forests hosting a high diversity of ectomycorrhizal fungi. Q. humboldtii is planted as an urban tree in Bogotá (Colombia). We studied how root-associated fungal communities of this tree change between natural and urban areas. Using Illumina sequencing, we amplified the ITS1 region and analyzed the resulting data using both OTUs and Amplicon Sequence Variants (ASVs) bioinformatics pipelines. The results obtained using both pipelines showed no substantial differences between OTUs and ASVs for the community patterns of root-associated fungi, and only differences in species richness were observed. We found no significant differences in the species richness between urban and rural sites based on Fisher's alpha or species-accumulation curves. However, we found significant differences in the community composition of fungi present in the roots of rural and urban trees with rural communities being dominated by Russula and Lactarius and urban communities by Scleroderma, Hydnangium, and Trechispora, suggesting a high impact of urban disturbances on ectomycorrhizal fungal communities. Our results highlight the importance of urban trees as reservoirs of fungal diversity and the potential impact of urban conditions on favoring fungal species adapted to more disturbed ecosystems.
Collapse
Affiliation(s)
- Juan David Sanchez-Tello
- Center for Research in Microbiology and Biotechnology-UR (CIMBIUR), Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Adriana Corrales
- Center for Research in Microbiology and Biotechnology-UR (CIMBIUR), Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE, 19901, USA
| |
Collapse
|
10
|
Magura T, Mizser S, Horváth R, Tóth M, Likó I, Lövei GL. Urbanization reduces gut bacterial microbiome diversity in a specialist ground beetle, Carabus convexus. Mol Ecol 2024; 33:e17265. [PMID: 38214370 DOI: 10.1111/mec.17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Urbanization is rapidly shaping and transforming natural environments, creating networks of modified land types. These urbanization-driven modifications lead to local extinctions of several species, but the surviving ones also face numerous novel selection pressures, including exposure to pollutants, habitat alteration, and shifts in food availability and diversity. Based on the assumption that the environmental pool of microorganisms is reduced in urban habitats due to habitat alteration, biodiversity loss, and pollution, we hypothesized that the diversity of bacterial microbiome in digestive tracts of arthropods would be lower in urban than rural habitats. Investigating the gut bacterial communities of a specialist ground beetle, Carabus convexus, in forested rural versus urban habitats by next generation high-throughput sequencing of the bacterial 16S rRNA gene, we identified 3839 bacterial amplicon sequence variants. The composition of gut bacterial samples did not significantly differ by habitat (rural vs. urban), sex (female vs. male), sampling date (early vs. late spring), or their interaction. The microbiome diversity (evaluated by the Rényi diversity function), however, was higher in rural than urban adults. Our findings demonstrate that urbanization significantly reduced the diversity of the gut bacterial microbiome in C. convexus.
Collapse
Affiliation(s)
- Tibor Magura
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
| | - Szabolcs Mizser
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Roland Horváth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
| | - Mária Tóth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
| | - István Likó
- UD-GenoMed Medical Genomic Technologies Ltd, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Gábor L Lövei
- HUN-REN-UD Anthropocene Ecology Research Group, Debrecen, Hungary
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Slagelse, Denmark
| |
Collapse
|
11
|
Sillo F, Neri L, Calvo A, Zampieri E, Petruzzelli G, Ferraris I, Delledonne M, Zaldei A, Gioli B, Baraldi R, Balestrini R. Correlation between microbial communities and volatile organic compounds in an urban soil provides clues on soil quality towards sustainability of city flowerbeds. Heliyon 2024; 10:e23594. [PMID: 38205296 PMCID: PMC10776942 DOI: 10.1016/j.heliyon.2023.e23594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Soil functionality is critical to the biosphere as it provides ecosystem services relevant for a healthy planet. The soil microbial composition is significantly impacted by anthropogenic activities, including urbanization. In this context, the study of soil microorganisms associated to urban green spaces has started to be crucial toward sustainable city development. Microbes living in the soil produce and degrade volatile organic compounds (VOCs). The VOC profiles may be used to distinguish between soils with various characteristics and management practices, reflecting variations in the activity of soil microbes that use a variety of metabolic pathways. Here, a combined approach based on DNA metabarcoding and GC-MS analysis was used to evaluate the soil quality from urban flowerbeds in Prato (Tuscany, Italy) in terms of microbial biodiversity and VOC emission profiles, with the final aim of evaluating the possible correlation between composition of microbial community and VOC patterns. Results showed that VOCs in the considered soil originated from anthropic and biological activity, and significant correlations between specific microbial taxa and VOCs were detected. Overall, the study demonstrated the feasibility of the use of microbe-VOC correlation as a proxy for soil quality assessment in urban soils.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luisa Neri
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Alice Calvo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Elisa Zampieri
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Gianniantonio Petruzzelli
- National Research Council, Institute of Research on Terrestrial Ecosystems (IRET), Via Moruzzi 1, 56124 Pisa, Italy
| | - Irene Ferraris
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alessandro Zaldei
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Beniamino Gioli
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Rita Baraldi
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
12
|
Davies LR, Barbero-López A, Lähteenmäki VM, Salonen A, Fedorik F, Haapala A, Watts PC. Microbes within the building envelope-a case study on the patterns of colonization and potential sampling bias. PeerJ 2023; 11:e16355. [PMID: 38025723 PMCID: PMC10658902 DOI: 10.7717/peerj.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.
Collapse
Affiliation(s)
- Lucy R. Davies
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Antti Salonen
- Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Filip Fedorik
- Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Antti Haapala
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|