1
|
Mata-Sucre Y, Krátká M, Oliveira L, Neumann P, Macas J, Schubert V, Huettel B, Kejnovský E, Houben A, Pedrosa-Harand A, Souza G, Marques A. Repeat-based holocentromeres of the woodrush Luzula sylvatica reveal insights into the evolutionary transition to holocentricity. Nat Commun 2024; 15:9565. [PMID: 39500889 PMCID: PMC11538461 DOI: 10.1038/s41467-024-53944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
In most studied eukaryotes, chromosomes are monocentric, with centromere activity confined to a single region. However, the rush family (Juncaceae) includes species with both monocentric (Juncus) and holocentric (Luzula) chromosomes, where centromere activity is distributed along the entire chromosome length. Here, we combine chromosome-scale genome assembly, epigenetic analysis, immuno-FISH and super-resolution microscopy to study the transition to holocentricity in Luzula sylvatica. We report repeat-based holocentromeres with an irregular distribution of features along the chromosomes. Luzula sylvatica holocentromeres are predominantly associated with two satellite DNA repeats (Lusy1 and Lusy2), while CENH3 also binds satellite-free gene-poor regions. Comparative repeat analysis suggests that Lusy1 plays a crucial role in centromere function across most Luzula species. Furthermore, synteny analysis between L. sylvatica (n = 6) and Juncus effusus (n = 21) suggests that holocentric chromosomes in Luzula could have arisen from chromosome fusions of ancestral monocentric chromosomes, accompanied by the expansion of CENH3-associated satellite repeats.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Marie Krátká
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Bruno Huettel
- Max Planck Genome Centre, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Souza TBD, Parteka LM, Kuo YT, Nascimento T, Schubert V, Pedrosa-Harand A, Marques A, Houben A, Vanzela ALL. Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges ( Eleocharis, Cyperaceae). Genome 2024. [PMID: 39284229 DOI: 10.1139/gen-2024-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species Eleocharis maculosa, Eleocharis geniculata, Eleocharis parodii, Eleocharis elegans, and Eleocharis montana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.
Collapse
Affiliation(s)
- Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Letícia Maria Parteka
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Thiago Nascimento
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil
| |
Collapse
|
3
|
Mata-Sucre Y, Parteka LM, Ritz CM, Gatica-Arias A, Félix LP, Thomas WW, Souza G, Vanzela ALL, Pedrosa-Harand A, Marques A. Oligo-barcode illuminates holocentric karyotype evolution in Rhynchospora (Cyperaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1330927. [PMID: 38384757 PMCID: PMC10879424 DOI: 10.3389/fpls.2024.1330927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Holocentric karyotypes are assumed to rapidly evolve through chromosome fusions and fissions due to the diffuse nature of their centromeres. Here, we took advantage of the recent availability of a chromosome-scale reference genome for Rhynchospora breviuscula, a model species of this holocentric genus, and developed the first set of oligo-based barcode probes for a holocentric plant. These probes were applied to 13 additional species of the genus, aiming to investigate the evolutionary dynamics driving the karyotype evolution in Rhynchospora. The two sets of probes were composed of 27,392 (green) and 23,968 (magenta) oligonucleotides (45-nt long), and generated 15 distinct FISH signals as a unique barcode pattern for the identification of all five chromosome pairs of the R. breviuscula karyotype. Oligo-FISH comparative analyzes revealed different types of rearrangements, such as fusions, fissions, putative inversions and translocations, as well as genomic duplications among the analyzed species. Two rounds of whole genome duplication (WGD) were demonstrated in R. pubera, but both analyzed accessions differed in the complex chain of events that gave rise to its large, structurally diploidized karyotypes with 2n = 10 or 12. Considering the phylogenetic relationships and divergence time of the species, the specificity and synteny of the probes were maintained up to species with a divergence time of ~25 My. However, karyotype divergence in more distant species hindered chromosome mapping and the inference of specific events. This barcoding system is a powerful tool to study chromosomal variations and genomic evolution in holocentric chromosomes of Rhynchospora species.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Letícia Maria Parteka
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Londrina State University, Londrina, Brazil
| | - Christiane M. Ritz
- Department of Botany, Senckenberg Museum for Natural History Görlitz, Senckenberg – Member of the Leibniz Association, Görlitz, Germany
- Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Leonardo P. Félix
- Laboratory of Plant Cytogenetics, Department of Biosciences, Federal University of Paraíba, Areia, Brazil
| | - William Wayt Thomas
- Institute of Systematic Botany, New York Botanical Garden, Bronx, NY, United States
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - André L. L. Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Londrina State University, Londrina, Brazil
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
4
|
Lucek K, Giménez MD, Joron M, Rafajlović M, Searle JB, Walden N, Westram AM, Faria R. The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution. Cold Spring Harb Perspect Biol 2023; 15:a041447. [PMID: 37604585 PMCID: PMC10626258 DOI: 10.1101/cshperspect.a041447] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics. While an important role for CRs in speciation has been suggested, evidence primarily stems from theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon pairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at a macroevolutionary level has been supported by associations between species diversity and rates of evolution of CRs across phylogenies, these findings are limited to a restricted range of CRs and taxa. Now that more broadly applicable and precise CR detection approaches have become available, we address the challenges in filling some of the conceptual and empirical gaps between micro- and macroevolutionary studies on the role of CRs in speciation. We synthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understanding of the evolutionary significance of CRs in speciation across the tree of life.
Collapse
Affiliation(s)
- Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Nora Walden
- Centre for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - Anja Marie Westram
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado;
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
5
|
Márquez-Corro JI, Martín-Bravo S, Blanco-Pastor JL, Luceño M, Escudero M. The holocentric chromosome microevolution: From phylogeographic patterns to genomic associations with environmental gradients. Mol Ecol 2023. [PMID: 37795678 DOI: 10.1111/mec.17156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Geographic isolation and chromosome evolution are two of the major drivers of diversification in eukaryotes in general, and specifically, in plants. On one hand, range shifts induced by Pleistocene glacial oscillations deeply shaped the evolutionary trajectories of species in the Northern Hemisphere. On the other hand, karyotype variability within species or species complexes may have adaptive potential as different karyotypes may represent different recombination rates and linkage groups that may be associated with locally adapted genes or supergenes. Organisms with holocentric chromosomes are ideal to study the link between local adaptation and chromosome evolution, due to their high cytogenetic variability, especially when it seems to be related to environmental variation. Here, we integrate the study of the phylogeography, chromosomal evolution and ecological requirements of a plant species complex distributed in the Western Euro-Mediterranean region (Carex gr. laevigata, Cyperaceae). We aim to clarify the relative influence of these factors on population differentiation and ultimately on speciation. We obtained a well-resolved RADseq phylogeny that sheds light on the phylogeographic patterns of molecular and chromosome number variation, which are compatible with south-to-north postglacial migration. In addition, landscape genomics analyses identified candidate loci for local adaptation, and also strong significant associations between the karyotype and the environment. We conclude that karyotype distribution in C. gr. laevigata has been constrained by both range shift dynamics and local adaptation. Our study demonstrates that chromosome evolution may be responsible, at least partially, for microevolutionary patterns of population differentiation and adaptation in Carex.
Collapse
Affiliation(s)
- José Ignacio Márquez-Corro
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
- Jodrell Laboratory, Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, UK
| | - Santiago Martín-Bravo
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - José Luis Blanco-Pastor
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
- Departamento de Biología, IVAGRO, Universidad de Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Cádiz, Spain
| | - Modesto Luceño
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|